3D-printed self-healing hydrogels via Digital Light Processing (original) (raw)
Related papers
Self‐Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?
Advanced Science
is a postdoctoral fellow at the Technical University of Denmark. He received his Ph.D. degree from the Department of Mechanical Engineering at the University of Malaya. His current research is focused on the development of flexible, self-healable, conductive, and stretchable nanocomposites for tissue engineering, cyborganics, and bionic applications. Alireza Dolatshahi-Pirouz's research lies at the crossroads of biology, engineering, physics, chemistry and biomaterials. He received his Ph.D. in physics from Aarhus University in 2009 and then took on a postdoctoralresearch position at the Wyss Institute of Biologically Inspired Engineering and Harvard Medical School. In 2015 he started his own research group at DTU Nanotech. Currently he is working on developing new 3D environments for directing stem cells into tissue-like structures and self-healable and stretchable materials with high electrical sensitivity for applications within the emerging fields of flexible electronics, cyborganics, and soft robotics.
3D Printing of Biocompatible Shape-Memory Double Network Hydrogels
ACS Applied Materials & Interfaces, 2020
Shape-memory hydrogels can be fixed to an arbitrary temporary shape and recover their permanent shape under appropriate stimulus conditions. Their shape-memory behavior and biocompatible mechanical and chemical properties impart them with many biomedical applications. However, like most hydrogels, traditional shape-memory hydrogels suffer from intrinsic brittleness due to the network inhomogeneity and high water content. In the past, the double network (DN) scheme has been proved a robust method to improve the mechanical performance of hydrogels. Although 3D printing of DN hydrogels has been realized before, 3D printable shape-memory DN hydrogels have not been achieved so far. In this work, we propose a one-pot method for printing a biocompatible shape-memory DN hydrogel via fused deposition method. The two networks incorporated to the hydrogel ink are polyacrylamide (PAAm) and gelatin. The PAAm network is covalently cross-linked and responsible for the permanent shape, while the gelatin network has thermoreversible cross-links and responsible for fixing the temporary shape. The DN hydrogel shows 3 to 7 times higher fracture toughness than a single network gelatin or PAAm hydrogel and can be fixed to 300% of its original length under tension and 10% of its original thickness under compression. The ink compositions are tuned for optimal printing quality and shape-memory performance. The robust mechanical integrity and dramatic shape transformation capability of the 3D-printed shape-memory DN hydrogel will open-up new potential applications in transformative medical robots and self-deployable devices.
Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality
Polymers
Existing self-healing mechanisms are still very far from full-scale implementation, and most published work has only demonstrated damage cure at the laboratory level. Their rheological nature makes the mechanisms for damage cure difficult to implement, as the component or structure is expected to continue performing its function. In most cases, a molecular bond level chemical reaction is required for complete healing with external stimulations such as heating, light and temperature change. Such requirements of external stimulations and reactions make the existing self-healing mechanism almost impossible to implement in 3D printed products, particularly in critical applications. In this paper, a conceptual description of the self-healing phenomenon in polymeric structures is provided. This is followed by how the concept of self-healing is motivated by the observation of nature. Next, the requirements of self-healing in modern polymeric structures and components are described. The exi...
Proceedings of the National Academy of Sciences of the United States of America, 2012
Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allow...
Biomedicines, 2021
Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.
Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer
ACS Applied Materials & Interfaces, 2020
A novel self-healable, fully reprocessable, and inkjet three-dimensional (3D) printable partially biobased elastomer is reported in this work. A long-chain unsaturated diacrylate monomer was first synthesized from canola oil and then crosslinked with a partially oxidized silicon-based copolymer containing free thiol groups and disulfide bonds. The elastomer is fabricated through inkjet 3D printing utilizing the photoinitiated thiol-ene click chemistry and reprocessed by compression molding exploiting the dynamic nature of disulfide bond. Self-healing is enabled by phosphinecatalyzed disulfide metathesis. The elastomer displayed a tensile strength of ∼52 kPa, a breaking strain of ∼24, and ∼86% healing efficiency at 80°C temperature after 8 h. Moreover, the elastomer showed excellent thermal stability, and the highest thermal degradation temperature was recorded to be ∼524°C. After reprocessing through compression molding, the elastomer fully recovered its mechanical and thermal properties. These properties of the elastomer yield an ecofriendly alternative of fossil fuel-based elastomers that can find broad applications in soft robotics, flexible wearable devices, strain sensors, health care, and next-generation energy-harvesting and-storage devices.
3D bioprinting of photocrosslinkable hydrogel constructs
Three-dimensional (3D) bioprinting comprises a group of biofabrication technologies for the additive manufacturing of 3D constructs by precisely printing biocompatible materials, cells and biochemicals in predesigned spatial positions. These technologies have been successfully applied to fabricate biodegradable 3D constructs with intricate architectures and heterogeneous composition, assuming a pivotal role in the field of tissue engineering. However, the full implementation of bioprinting strongly depends on the development of novel biomaterials exhibiting fast crosslinking schemes and appropriate printability, cell-compatibility and biomechanical properties. Photocrosslinkable hydrogels are attractive materials for bioprinting as they provide fast polymerization under cell-compatible conditions and exceptional spatiotemporal control over the gelation process. Photopolymerization can also be performed during the bioprinting to promote the instantaneous formation of hydrogel with high well-defined architecture and structural stability. In this review paper, we summarize the most recent developments on bioprinting of photocrosslinkable biodegradable hydrogels for tissue engineering, focusing on the chemical modification strategies and the combination of photocrosslinking reactions with other gelation modalities.
Biomedicines, 2021
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customiz...