Copper oxide based nanostructures for improved solar cell efficiency (original) (raw)

Abstract

Resurgence of copper oxide based thin film solar cells demands exclusive methods of integrating various layers with superior constituents for increased solar-electric conversion efficiency. Exceedingly optically active nanostructured phase mixture of copper oxides was synthesized by an energy efficient hydrothermal process. Comprehensive structural and optical studies of these nanostructured copper oxides reveal its efficacy as a unique solar cell material. Excellent solar cell characteristics have been observed when these nanopowders are integrated with ZnO/CuO based thin films. X-ray diffraction, Raman micro-scattering, scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-vis spectroscopy, atomic force microscopy, and optoelectronic measurements were employed to characterize these unified electronic devices. Solar cell measurements indicate a considerable increase in short circuit current density (J sc ) and open circuit voltage (V oc ) in the fabricated nanostructure powder-thin film hybrid solar cell devices. The solar cell efficiency of these nanopowder-thin film devices is found to be 2.88%. The physics behind this enrichment of solar cell properties has also been elucidated in the study. Exhaustive Raman spectroscopic and photoluminescence studies prove that multi-phonon scattering may play a major role for this enhancement. This integration of nanostructures with thin film solar cells can evolve to a new direction in photovoltaic technology.

FAQs

sparkles

AI

How do copper oxide nanostructures enhance solar cell efficiency?add

The integration of copper oxide nanostructures into solar cells increases power conversion efficiency by 80% compared to micropowder devices, achieving 2.88% overall efficiency.

What impact does annealing time have on solar cell performance?add

Increasing annealing time from 1h to 2h boosts short circuit current (Jsc) by 176% and open circuit voltage (Voc) by 14%.

How do copper oxide's band gap properties influence solar cell technology?add

Copper oxide exhibits band gap energies ranging from 2.1 eV to 1.4 eV, aligning well with optimal solar cell efficiency.

What role does nanoparticle morphology play in charge transport?add

The morphology of copper oxide nanostructures influences charge transport by enhancing contact area and reducing carrier recombination.

What synthesis method improves the optical properties of copper oxide?add

Hydrothermal synthesis produces copper oxide nanostructures with an optical absorption coefficient of 7.05E+5 cm-1 at 525 nm, outpacing commercial alternatives.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (72)

  1. M. Grätzel, Nature 421 (2003) 586.
  2. T. Markvart, L. Castaner, Solar Cells Materials: Manufacture and Operation, Elsevier, Oxford, 2005. (Chap. IIa).
  3. S. Agarkar, V. Dhas, S. Muduli, S. Ogale, RSC Adv. 2 (2012) 11645.
  4. A. Frank, N. Kopidakis, J.V.D. Lagemaat, Coord. Chem. Rev. 248 (2004) 1165.
  5. M. Law, L. Greene, J. Johnson, R. Saykally, P. Yang, Nat. Mater. 4 (2005) 455.
  6. T. Oekermann, D. Zhang, T. Yoshida, H. Minoura, J. Phys. Chem. B 108 (2004) 2227.
  7. B.P. Rai, Sol. Cells 25 (1988) 265.
  8. A. Mittiga, E. Salza, F. Sarta, M. Tucci, R. Vasanthi, Appl. Phys. Lett. 88 (2006) 163502.
  9. H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, J. Cuya, J. Mater. Sci. Res. 1 (2012) 138.
  10. T. Minami, T. Miyata, K. Ihara, Y. Minamino, T. Satoshi, Thin Solid Films 494 (2006) 47.
  11. K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, T. Sakurai, Sol. Energy 80 (2006) 715.
  12. M. Izaki, K. Mizuno, T. Shinagawa, M. Inaba, A. Tasaka, J. Electrochem. Soc. 153 (2006) C668.
  13. N. Lewis, Science 315 (2007) 798.
  14. W. Huynh, J. Dittmer, A. Alivisatos, Science 295 (2002) 2425.
  15. O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38 (2000) 1.
  16. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Nature 408 (2000) 440.
  17. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97 (2005) 114302.
  18. J.A. Czaban, D.A. Thompson, R.R. LaPierre, Nano Lett. 9 (2009) 148.
  19. E.C. Garnett, P.D. Yang, J. Am. Chem. Soc. 130 (2008) 9224.
  20. Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Nat. Mater. 8 (2009) 648.
  21. J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, A. Biris, Adv. Funct. Mater. 17 (2007) 3897.
  22. W. Yuxin, L. Xinyong, W. Ning, Q. Xie, C. Yongying, Sep. Purif. Technol. 62 (2008) 727.
  23. N. Kopidakis, K. Benkstein, J. van de Lagemaat, A. Frank, Q. Yuan, E. Schiff, Phys. Rev. B Condens. Matter Mater. Phys. 73 (2006) 7.
  24. K. Zhu, N. Neale, A. Miedaner, A. Frank, Nano Lett. 7 (2007) 69.
  25. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
  26. B. Faughnan, R. Crandall, Appl. Phys. Lett. 31 (1977) 834.
  27. R. Jin, Y. Cao, E. Hao, G. Metraux, G. Schatz, C. Mirkin, Nature 425 (2003) 487.
  28. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15 (2003) 353.
  29. A. Bhaumik, A.M. Shearin, R. Patel, K. Ghosh, Phys. Chem. Chem. Phys. 16 (2014) 11054.
  30. L.M. Wong, S.Y. Chiam, J.Q. Huang, S.J. Wang, J.S. Pan, W.K. Chim, J. Appl. Phys. 108 (2010) 033702.
  31. V.I. Arkhipov, E.V. Emelianova, H. Bassler, Phys. Rev. Lett. 82 (1999) 1321.
  32. T. Kirchartz, J. Mattheis, U. Rau, Phys. Rev. Lett. B 78 (2008) 235320.
  33. S.C. Abhramas, A. Kvick, Acta Crystallogr. B 45 (1989) 34.
  34. H. Kidowaki, T. Oku, T. Akiyama, J. Phys. 352 (2012) 012022.
  35. M. Zeman, J. Krc, Mater. Res. Soc. Symp. Proc. 989 (2007) A03.
  36. S. Kugler, J. Phys. Conf. Ser. 253 (2010) 1.
  37. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432 (2004) 488.
  38. J. Chrzanowski, J. Irwin, Solid State Commun. 70 (2009) 11.
  39. H. Goldstein, D. Kim, P. Yu, L. Bourne, J. Chaminade, L. Nganga, Phys. Rev. B Condens. Matter Mater. Phys. 41 (2009) 7192.
  40. J. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, London, 1957. (Chap. 5).
  41. R. Loudon, Adv. Phys. 13 (1964) 423.
  42. T. Maruyama, Sol. Energy Mater. Sol. Cells 56 (1998) 85.
  43. M. Green, Sol. Energy Mater. Sol. Cells 92 (2008) 1305.
  44. D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Appl. Surf. Sci. 253 (2007) 9085.
  45. V. Craciun, J. Elders, J.G.E. Gardeniers, I.W. Boyd, Appl. Phys. Lett. 65 (1994) 23.
  46. B. Meyer, D. Marx, Phys. Rev. B 67 (2003) 035403.
  47. X. Teng, H. Fan, S. Pan, C. Ye, G. Li, Mater. Lett. 61 (2007) 201.
  48. A. Chen, H. Long, X. Li, G. Yang, P. Lu, Vacuum 83 (2009) 929.
  49. S. Mridha, D. Basak, Semicond. Sci. Technol. 21 (2006) 928.
  50. C. Chen, Y. Zheng, Y. Zhan, X. Qizheng, K. Wei, Cryst. Growth Des. 8 (2008) 3549.
  51. H. Morkoc, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Willey-VCH, 2009. (Chap.1).
  52. M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, J. Appl. Phys. 87 (2000) 2445.
  53. J.F. Scott, T.C. Damne, W.T. Silvast, R.C.C. Leite, L.F. Cheesman, Opt. Commun. 1 (1970) 397.
  54. F.K. Shan, G.X. Liu, Z.F. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, Y.S. Yu, J. Korean Phys. Soc. 459 (2004) 771.
  55. B. Kumar, H. Gong, Y.C. Shue, T. Sudhiranjan, H. Younan, Appl. Phys. Lett. 89 (2006) 071922.
  56. J.C. Irwin, T. Wei, J. Phys. Condens. Matter 3 (1991) 3.
  57. J. Reydellet, M. Balkanski, D. Trivich, Phys. Status Solidi B 52 (1972) 175.
  58. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voiget, Appl. Phys. Lett. 68 (1996) 403.
  59. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79 (1996) 7983.
  60. B. Balamurugan, B.R. Mehta, D.K. Avasthi, F. Singh, A.K. Arora, M. Rajalakshmi, G. Raghavan, A.K. Tyagi, S.M. Shivaprasad, J. Appl. Phys. 92 (2002) 3304.
  61. J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, J. Appl. Electrochem. 34 (2004) 687.
  62. B.D. Yuhas, P. Yang, J. Am. Chem. Soc. 131 (2009) 3756.
  63. L.Y. Isseroff, E.A. Carter, Chem. Mater. 25 (2013) 253.
  64. R.N. Hall, Proceedings of the IEE -Part B: Electronic and Communication Engineer- ing, 106, 1959, p. 923.
  65. W.V. Roosbroeck, W. Shockley, Phys. Rev. 94 (1954) 1558.
  66. J. Bardeen, F.J. Blatt, L.H. Hall, Photoconductivity Conference, Wiley, 1956, p. 146.
  67. J. Cui, U.J. Gibson, J. Phys. Chem. C 114 (2010) 6408.
  68. S. Adachi, GaAs and Related Materials, World Scientific, New Jersey, 1994. 232.
  69. S.O. Kasap, Principles of Electronic Materials and Devices, Tata-McGraw-Hill Pub- lishing Company Limited, New Delhi, 2006. (Chap. 5).
  70. H.R. Stuart, D.G. Hall, Appl. Phys. Lett. 69 (1996) 2327.
  71. D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86 (2005) 063106.
  72. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983. (Chap. 2).