A Chemical Biology Approach to the Chaperome in Cancer—HSP90 and Beyond (original) (raw)

HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy

Cancer Investigation, 2020

Heat shock protein 90 (HSP90), a highly and unique chaperone, presents as a double-edged sword. It plays an essential role in many physiological and pathological processes, including tumor development. The current review highlights a recent understanding of the roles of HSP90 in molecular mechanisms underlying cancer survival and progression. HSP90 and its client proteins through the regulation of oncoproteins including signaling proteins, receptors and transcriptional factors involved in tumorigenesis. It also has potential clinical application as diagnostic and prognostic biomarkers for assessing cancer progression. In this way, using HSP90 to develop new anti-cancer therapeutic agents including HSP90 inhibitors, anti-HSP90 antibody, and HSP90-based vaccines has been promising.

Dynamic Impacts of the Inhibition of the Molecular Chaperone Hsp90 on the T-Cell Proteome Have Implications for Anti-Cancer Therapy

PLoS ONE, 2013

The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and antiproliferative functions. Data are available via ProteomeXchange with identifier PXD000537.

The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding

Nature Communications, 2016

Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors.

Hsp90 Molecular Chaperone Inhibitors: Are We There Yet?

Clinical Cancer Research, 2012

Heat shock protein (Hsp) 90 is an ATP-dependent molecular chaperone exploited by malignant cells to support activated oncoproteins, including many cancer-associated kinases and transcription factors, and is essential for oncogenic transformation. Originally viewed with skepticism, Hsp90 inhibitors are now actively pursued by the pharmaceutical industry, with 17 agents having entered clinical trials. Hsp90's druggability was established using the natural products geldanamycin and radicicol which mimic the unusual ATP structure adopted in the chaperone's N-terminal nucleotide-binding pocket and cause potent and selective blockade of ATP binding/hydrolysis, inhibit chaperone function, deplete oncogenic clients, and demonstrate antitumor activity. Preclinical data with these natural products have heightened interest in Hsp90 as a drug target, and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) has demonstrated clinical activity (as defined by RECIST criteria) in HER2+ breast cancer. Many optimized synthetic small molecule Hsp90 inhibitors from diverse chemotypes are now in clinical trials. We review the discovery and development of Hsp90 inhibitors and assess their future potential. There has been significant learning from experience in both the basic biology and the translational drug development around Hsp90, enhanced by the use of Hsp90 inhibitors as chemical probes. Success will likely lie in treating cancers addicted to particular driver oncogene products, such as HER2, ALK, EGFR and BRAF, that are sensitive Hsp90 clients, as well as in malignancies, especially multiple myeloma, where buffering of proteotoxic stress is critical for survival. We discuss approaches to enhancing the effectiveness of Hsp90 inhibitors and highlight new chaperone and stress response pathway targets, including HSF1 and Hsp70.

Sensitizing tumor cells to conventional drugs: HSP70 chaperone inhibitors, their selection and application in cancer models

Cell death & disease, 2018

Hsp70 chaperone controls proteostasis and anti-stress responses in rapidly renewing cancer cells, making it an important target for therapeutic compounds. To date several Hsp70 inhibitors are presented with remarkable anticancer activity, however their clinical application is limited by the high toxicity towards normal cells. This study aimed to develop assays to search for the substances that reduce the chaperone activity of Hsp70 and diminish its protective function in cancer cells. On our mind the resulting compounds alone should be safe and function in combination with drugs widely employed in oncology. We constructed systems for the analysis of substrate-binding and refolding activity of Hsp70 and to validate the assays screened the substances representing most diverse groups of chemicals of InterBioScreen library. One of the inhibitors was AEAC, an N-amino-ethylamino derivative of colchicine, which toxicity was two-orders lower than that of parent compound. In contrast to colc...

Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70

Cell cycle (Georgetown, Tex.), 2014

Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.

HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview

Anticancer research, 2012

Molecular chaperones, many of which are heat-shock proteins (HSPs), are an important class of molecules with various functions. Pathological conditions in which chaperones become etiological and/or pathogenic factors are called chaperonopathies, and are classified into by defect, by excess, and by 'mistake'. In the latter case, the chaperone is structurally and functionally normal but participates in pathways that favor disease, although in some cases the chaperone may have post-translational modifications that may lead it to change its location and function and, thus, to become pathogenic. For example, HSP-chaperones are involved in carcinogenesis in various ways, so that some forms of cancer may be considered 'chaperonopathies by mistake'. This concept suggests new strategies for anticancer therapy (chaperonotherapy), in which the primary targets or therapeutic agents are chaperones. Chaperonotherapy consists of the utilization of HSP-chaperones for treating chaper...

Hsp90/Cdc37 Chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A

BMC Bioinformatics, 2011

Background: HSPs (Heat shock proteins) are highly conserved ubiquitous proteins among species which are involved in maintaining appropriate folding and conformation of other proteins and are thus referred to as molecular chaperones. Hsp90 (Heat-shock protein 90 kDa) is one of a group of molecular chaperones responsible for managing protein folding and quality control in cell environment. However it is also involved in the maturation and stabilization of a wide range of oncogenic client proteins which are crucial for oncogenesis and malignant progression. Hsp90 requires a series of co-chaperones to assemble into a super-chaperone complex for its function. These co-chaperones bind and leave the complex at various stages to regulate the chaperoning process. Arresting the chaperone cycle at these stages by targeting different co-chaperone/Hsp90 interactions seems to be quite a viable alternative and is likely to achieve similar consequences as that of Hsp90 direct inhibition with added favors of high specificity and reduced side effect profile. The study conducted here is an attempt to explore the potential of Withania somnifera's major constituent WA (Withaferin A) in attenuating the Hsp90/Cdc37 chaperone/ co-chaperone interactions for enhanced tumor arresting activity and to elucidate the underlying mode of action using computational approaches.