Association study designs for complex diseases (original) (raw)
Related papers
PLoS ONE, 2013
Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies. However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors. Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of ''non-cases'') reduced the statistical power to detect genetic association and greatly decreased the estimates of risk attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than increase in sample size.
Interpretation of genetic association studies in complex disease
Pharmacogenomics Journal, 2002
Recent successful discoveries of potentially causal single nucleotide polymorphisms (SNPs) for complex diseases hold great promise, and commercialization of genomics in personalized medicine has already begun. The hope is that genetic testing will benefit patients and their families, and encourage positive lifestyle changes and guide clinical decisions. However, for many complex diseases, it is arguable whether the era of genomics in personalized medicine is here yet. We focus on the clinical validity of genetic testing with an emphasis on two popular statistical methods for evaluating markers. The two methods, logistic regression and receiver operating characteristic (ROC) curve analysis, are applied to our agerelated macular degeneration dataset. By using an additive model of the CFH, LOC387715, and C2 variants, the odds ratios are 2.9, 3.4, and 0.4, with p-values of 10 213 , 10 213 , and 10 23 , respectively. The area under the ROC curve (AUC) is 0.79, but assuming prevalences of 15%, 5.5%, and 1.5% (which are realistic for age groups 80 y, 65 y, and 40 y and older, respectively), only 30%, 12%, and 3% of the group classified as high risk are cases. Additionally, we present examples for four other diseases for which strongly associated variants have been discovered. In type 2 diabetes, our classification model of 12 SNPs has an AUC of only 0.64, and two SNPs achieve an AUC of only 0.56 for prostate cancer. Nine SNPs were not sufficient to improve the discrimination power over that of nongenetic predictors for risk of cardiovascular events. Finally, in Crohn's disease, a model of five SNPs, one with a quite low odds ratio of 0.26, has an AUC of only 0.66. Our analyses and examples show that strong association, although very valuable for establishing etiological hypotheses, does not guarantee effective discrimination between cases and controls. The scientific community should be cautious to avoid overstating the value of association findings in terms of personalized medicine before their time.
Mapping complex disease loci in whole-genome association studies
Nature, 2004
Identification of the genetic polymorphisms that contribute to susceptibility for common diseases such as type 2 diabetes and schizophrenia will aid in the development of diagnostics and therapeutics. Previous studies have focused on the technique of genetic linkage, but new technologies and experimental resources make whole-genome association studies more feasible. Association studies of this type have good prospects for dissecting the genetics of common disease, but they currently face a number of challenges, including problems with multiple testing and study design, definition of intermediate phenotypes and interaction between polymorphisms.
Genome-wide association studies: progress and potential for drug discovery and development
Nature Reviews Drug Discovery, 2008
Although genetic studies have been critically important for the identification of therapeutic targets in Mendelian disorders, genetic approaches aiming to identify targets for common, complex diseases have traditionally had much more limited success. However, during the past year, a novel genetic approach -genome-wide association (GWA) -has demonstrated its potential to identify common genetic variants associated with complex diseases such as diabetes, inflammatory bowel disease and cancer. Here, we highlight some of these recent successes, and discuss the potential for GWA studies to identify novel therapeutic targets and genetic biomarkers that will be useful for drug discovery, patient selection and stratification in common diseases.
Biomarker insights, 2007
Novel, comprehensive approaches for biomarker discovery and validation are urgently needed. One particular area of methodologic need is for discovery of novel genetic biomarkers in complex diseases and traits. Here, we review recent successes in the use of genome wide association (GWA) approaches to identify genetic biomarkers in common human diseases and traits. Such studies are yielding initial insights into the allelic architecture of complex traits. In general, it appears that complex diseases are associated with many common polymorphisms, implying profound genetic heterogeneity between affected individuals.