UDPipe at SIGMORPHON 2019: Contextualized Embeddings, Regularization with Morphological Categories, Corpora Merging (original) (raw)

CMU-01 at the SIGMORPHON 2019 Shared Task on Crosslinguality and Context in Morphology

Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, 2019

This paper presents the submission by the CMU-01 team to the SIGMORPHON 2019 task 2 of Morphological Analysis and Lemmatization in Context. This task requires us to produce the lemma and morpho-syntactic description of each token in a sequence, for 107 treebanks. We approach this task with a hierarchical neural conditional random field (CRF) model which predicts each coarse-grained feature (eg. POS, Case, etc.) independently. However, most treebanks are under-resourced, thus making it challenging to train deep neural models for them. Hence, we propose a multilingual transfer training regime where we transfer from multiple related languages that share similar typology. 1

Sigmorphon 2019 Task 2 system description paper: Morphological analysis in context for many languages, with supervision from only a few

Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper presents the UNT HiLT+Ling system for the Sigmorphon 2019 shared Task 2: Morphological Analysis and Lemmatization in Context. Our core approach focuses on the morphological tagging task; part-ofspeech tagging and lemmatization are treated as secondary tasks. Given the highly multilingual nature of the task, we propose an approach which makes minimal use of the supplied training data, in order to be extensible to languages without labeled training data for the morphological analysis task. Specifically, we use a parallel Bible corpus to align contextual embeddings at the verse level. The aligned verses are used to build cross-language translation matrices, which in turn are used to map between embedding spaces for the various languages. Finally, we use sets of inflected forms, primarily from a high-resource language, to induce vector representations for individual UniMorph tags. Morphological tagging is performed by matching vector representations to embeddings for individual tokens. While our system results are dramatically below the average system submitted for the shared task evaluation campaign, our method is (we suspect) unique in its minimal reliance on labeled training data.

Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing

ArXiv, 2019

We present an extensive evaluation of three recently proposed methods for contextualized embeddings on 89 corpora in 54 languages of the Universal Dependencies 2.3 in three tasks: POS tagging, lemmatization, and dependency parsing. Employing the BERT, Flair and ELMo as pretrained embedding inputs in a strong baseline of UDPipe 2.0, one of the best-performing systems of the CoNLL 2018 Shared Task and an overall winner of the EPE 2018, we present a one-to-one comparison of the three contextualized word embedding methods, as well as a comparison with word2vec-like pretrained embeddings and with end-to-end character-level word embeddings. We report state-of-the-art results in all three tasks as compared to results on UD 2.2 in the CoNLL 2018 Shared Task.

Joint learning of morphology and syntax with cross-level contextual information flow

Natural Language Engineering, 2022

Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/) We propose an integrated deep learning model for morphological segmentation, morpheme tagging, part-of-speech (POS) tagging, and syntactic parsing onto dependencies, using cross-level contextual information flow for every word, from segments to dependencies, with an attention mechanism at horizontal flow. Our model extends the work of Nguyen and Verspoor ((2018). Proceedings of the CoNLL Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. The Association for Computational Linguistics, pp. 81-91.) on joint POS tagging and dependency parsing to also include morphological segmentation and morphological tagging. We report our results on several languages. Primary focus is agglutination in morphology, in particular Turkish morphology, for which we demonstrate improved performance compared to models trained for individual tasks. Being one of the earlier efforts in joint modeling of syntax and morphology along with dependencies, we discuss prospective guidelines for future comparison.

LemmaTag: Jointly Tagging and Lemmatizing for Morphologically Rich Languages with BRNNs

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018

We present LemmaTag, a featureless neural network architecture that jointly generates part-of-speech tags and lemmas for sentences by using bidirectional RNNs with characterlevel and word-level embeddings. We demonstrate that both tasks benefit from sharing the encoding part of the network, predicting tag subcategories, and using the tagger output as an input to the lemmatizer. We evaluate our model across several languages with complex morphology, which surpasses state-of-the-art accuracy in both part-of-speech tagging and lemmatization in Czech, German, and Arabic.

Overview of the SPMRL 2013 shared task: cross-framework evaluation of parsing morphologically rich languages

This paper reports on the first shared task on statistical parsing of morphologically rich languages (MRLs). The task features data sets from nine languages, each available both in constituency and dependency annotation. We report on the preparation of the data sets, on the proposed parsing scenarios, and on the evaluation metrics for parsing MRLs given different representation types. We present and analyze parsing results obtained by the task participants, and then provide an analysis and comparison of the parsers across languages and frameworks, reported for gold input as well as more realistic parsing scenarios.

The SIGMORPHON 2019 Shared Task: Morphological Analysis in Context and Cross-Lingual Transfer for Inflection

Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

The SIGMORPHON 2019 shared task on cross-lingual transfer and contextual analysis in morphology examined transfer learning of inflection between 100 language pairs, as well as contextual lemmatization and morphosyntactic description in 66 languages. The first task evolves past years' inflection tasks by examining transfer of morphological inflection knowledge from a high-resource language to a low-resource language. This year also presents a new second challenge on lemmatization and morphological feature analysis in context. All submissions featured a neural component and built on either this year's strong baselines or highly ranked systems from previous years' shared tasks. Every participating team improved in accuracy over the baselines for the inflection task (though not Levenshtein distance), and every team in the contextual analysis task improved on both state-of-the-art neural and non-neural baselines.

The MRL 2022 Shared Task on Multilingual Clause-level Morphology

Le Centre pour la Communication Scientifique Directe - HAL - Inria, 2022

The 2022 Multilingual Representation Learning (MRL) Shared Task was dedicated to clause-level morphology. As the first ever benchmark that defines and evaluates morphology outside its traditional lexical boundaries, the shared task on multilingual clause-level morphology sets the scene for competition across different approaches to morphological modeling, with 3 clause-level sub-tasks: morphological inflection, reinflection and analysis, where systems are required to generate, manipulate or analyze simple sentences centered around a single content lexeme and a set of morphological features characterizing its syntactic clause. This year's tasks covered eight typologically distinct languages: English, French, German, Hebrew, Russian, Spanish, Swahili and Turkish. The tasks has received submissions of four systems from three teams which were compared to two baselines implementing prominent multilingual learning methods. The results show that modern NLP models are effective in solving morphological tasks even at the clause level. However, there is still room for improvement, especially in the task of morphological analysis.

Multi Task Deep Morphological Analyzer: Context Aware Joint Morphological Tagging and Lemma Prediction

ArXiv, 2018

The ambiguities introduced by the recombination of morphemes constructing several possible inflections for a word makes the prediction of syntactic traits in Morphologically Rich Languages (MRLs) a notoriously complicated task. We propose the Multi Task Deep Morphological analyzer (MT-DMA), a character-level neural morphological analyzer based on multitask learning of word-level tag markers for Hindi and Urdu. MT-DMA predicts a set of six morphological tags for words of Indo-Aryan languages: Parts-of-speech (POS), Gender (G), Number (N), Person (P), Case (C), Tense-Aspect-Modality (TAM) marker as well as the Lemma (L) by jointly learning all these in one trainable framework. We show the effectiveness of training of such deep neural networks by the simultaneous optimization of multiple loss functions and sharing of initial parameters for context-aware morphological analysis. Exploiting character-level features in phonological space optimized for each tag using multi-objective genetic...

Multi-Team: A Multi-attention, Multi-decoder Approach to Morphological Analysis

Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology

This paper describes our submission to SIG-MORPHON 2019 Task 2: Morphological analysis and lemmatization in context. Our model is a multi-task sequence to sequence neural network, which jointly learns morphological tagging and lemmatization. On the encoding side, we exploit character-level as well as contextual information. We introduce a multi-attention decoder to selectively focus on different parts of character and word sequences. To further improve the model, we train on multiple datasets simultaneously and use external embeddings for initialization. Our final model reaches an average morphological tagging F1 score of 94.54 and a lemma accuracy of 93.91 on the test data, ranking respectively 3rd and 6th out of 13 teams in the SIG-MORPHON 2019 shared task.