Programmable Macroscopic Self-Assembly of DNA-Decorated Hydrogels (original) (raw)

The precise and predictable formation of doublehelical structures from complementary DNA sequences has made DNA an extremely versatile tool for programming self-assembled structures from the nanometer to micrometer scale. While a number of supramolecular interactions have been shown to drive self-assembly of macroscopic building blocks of the millimeter scale, DNA-driven self-assembly of macroscopic objects has not been well-established. In this work, we developed a postpolymerization coupling strategy to conjugate short DNA sequences to polyacrylamide-based hydrogel blocks. We observed sequencespecific self-assembly of DNA-decorated hydrogels with 1−2 mm edges in aqueous solution. Furthermore, selective disassembly of hydrogels upon addition of a DNA strand was demonstrated by exploiting a strand displacement reaction. These results lay the foundation for adaptation of various DNA functions to macroscopic self-assembly, for example, molecular recognition, molecular computation, and chemical catalysis.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.