Comparative evaluation of viral and nonviral methods of gene delivery to mouse mesenchymal stem cells (original) (raw)
Related papers
Gene Transfer into Rat Mesenchymal Stem Cells: A Comparative Study of Viral and Nonviral Vectors
Stem Cells and Development, 2006
protocols for the treatment of disease and promotion of repair. The efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression with minimal cell death. The study was carried out on bone-marrow derived rat MSCs, and a range of vectors was tested on the same stem cell preparation. Adenovirus, adeno-associated virus (AAV; serotypes 1, 2, 4, 5, and 6), lentivirus, and nonviral vectors were compared. Lentivirus proved to be most effective with transduction efficiencies of up to 95%, concurrent with low levels of cell toxicity. Adenovirus also proved effective, but a significant increase in cell death was seen with increasing viral titer. Rat MSCs remained refractory to transduction by all AAV serotypes, in contrast to rabbit MSCs tested at the same time. Lipofection of plasmid DNA gave moderate transfection levels but was also accompanied by cell death. Electroporative gene transfer proved ineffective at the parameters tested and resulted in high cell death. High and moderate levels of cell transduction using lentivirus vectors did not affect the ability of the cells to differentiate down the adipogenic pathway.
Optimized Lentiviral Transduction of Mouse Bone Marrow-Derived Mesenchymal Stem Cells
Stem Cells and Development, 2008
Mesenchymal stem cells (MSCs) have attracted much attention as potential platforms for transgene delivery and cell-based therapy for human disease. MSCs have the capability to self-renew and retain multipotency after extensive expansion in vitro, making them attractive targets for ex vivo modification and autologous transplantation. Viral vectors, including lentiviral vectors, provide an efficient means for transgene delivery into human MSCs. In contrast, mouse MSCs have proven more difficult to transduce with lentiviral vectors than their human counterparts, and because many studies use mouse models of human disease, an improved method of transduction would facilitate studies using ex vivo-modified mouse MSCs. We have worked toward improving the production of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors and optimizing transduction conditions for mouse MSCs using lentivirus vectors pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G), the ecotropic murine leukemia virus envelope glycoprotein (MLV-E), and the glycoproteins derived from the Armstrong and WE strains of lymphocytic choriomeningitis virus (LCMV-Arm, LCMV-WE). Mouse MSCs were readily transduced following overnight incubation using a multiplicity of infection of at least 40. Alternatively, mouse MSCs in suspension were readily transduced after a 1-h exposure to lentiviral pseudotypes immediately following trypsin treatment or retrieval from storage in liquid nitrogen. LCMV-WE pseudotypes resulted in efficient transduction of mouse MSCs with less toxicity than VSV-G pseudotypes. In conclusion, our improved production and transduction conditions for lentiviral vectors resulted in efficient transduction of mouse MSCs, and these improvements should facilitate the application of such cells in the context of mouse models of human disease.
Russian Journal of Genetics, 2012
The efficiency of human bone marrow (BM) mesenchymal stem cell (MSC) transduction with a bicistronic lentivirus vector was estimated, and the stability of transgene expression in genetically modified MSCs was determined. First passage BM MSCs were capable of efficient transduction with the bicistronic lentivirus vector. The transduction efficiency depended on the multiplicity of infection (MOI), being 64.64 ± 6.5 and 88.6 ± 2.9% at MOI 10 and 20, respectively. The lentivirus transduction efficiency proved indepen dent on the number of passages of a BM MSC culture, and expression of the egfp and dsRed1 transgenes in genetically modified MSCs remained stable for one month of culturing. A comparison showed that the level of egfp and dsRed1 transgene expression was preserved upon hepatogenic differentiation in vitro. The results provide a basis for further development of multigenic modification of human BM MSCs for research and/or therapeutic purposes.
Stable Lentiviral Vector Transfer into Mesenchymal Stem Cells In Vivo
Bulletin of Experimental Biology and Medicine, 2015
Green fl uorescent protein (eGFP) gene was transferred into mouse mesenchymal stem cells in vivo using a lentiviral vector. In 2 months after injection of the lentivirus into the cavity of the femoral bone, up to 30% fi broblast CFU in the bone marrow of infected mice contained the alien gene. The transferred gene was found in more than 50% of adherent layers of longterm bone marrow cultures formed by mesenchymal stem cells from the infected mice bone marrow; 4% fi broblast CFU obtained from these layers were labeled. Ectopic hemopoiesis foci developed after transplantation of the bone marrow from infected mice under the renal capsule of syngeneic recipients contained bone tissue labeled with the alien gene in 57% cases and labeled fi broblast CFU in 11%. The data confi rm the possibility of gene transfer with the lentiviral vectors into the mesenchymal stem cells in vivo.
Lentiviral Vectors for Sustained Transgene Expression in Human Bone Marrow–Derived Stromal Cells
Molecular Therapy, 2002
Bone marrow-derived mesenchymal stromal cells (MSCs) have attracted attention as potential platforms for the systemic delivery of therapeutic proteins in vivo following gene transfer using oncogenic retroviruses. However, the major limitations of this strategy include low levels of gene transfer and a general lack of long-term transgene expression. We have investigated the expression of several transgenes in MSCs following HIV-1 lentiviral vector-mediated gene transfer. Vectors containing a variety of strong promoters driving enhanced green fluorescence protein (EGFP) and coral (Discosoma sp.)-derived red fluorescent protein (DsRed) reporter genes pseudotyped with the vesicular stomatitis virus-G (VSV-G) glycoprotein were able to transduce cultured MSCs with high efficiency. Transduction efficiencies and transgene expression levels in MSCs were found to be higher with lentiviral vectors than with a vector based on the murine stem cell virus pseudotyped with VSV-G. Transgene expression was maintained in culture for at least 5 months. HIV-1-based lentiviral vectors were able to transduce clonogenic mesenchymal progenitor cells, which were capable of maintaining transgene expression by their MSC progeny, over several cell divisions and during differentiation into adipocytes, indicating that terminal adipocyte cell differentiation was unaffected by lentivirus-mediated reporter gene transfer. Collectively these results suggest that lentivirus-mediated gene transfer strategies provide an efficient tool for ex vivo modification of MSCs that does not interfere with differentiation. FIG. 2. Influence of promoters and vectors on expression of EGFP transgene in HOS cells and in MSCs. (A) Relative EGFP levels in HOS cells and MSCs transduced with lentiviral vectors. HOS cells were transduced with NL-EGFP/CMV, NL-EGFP/CEF, and NL-EGFP/CAG vector stocks at MOIs of 0.87, 0.97, and 0.83, respectively, in DMEM-10% FBS containing 8 g/ml Polybrene at 37ЊC for 20 hours. The cells were analyzed by FACS 3 days after transduction. MSCs were transduced with the NL-EGFP/CMV, NL-EGFP/CEF, and NL-EGFP/CAG vector stocks with the same amounts of virus used for the HOS cell infections described earlier. The relative MFI values are displayed. The data shown were obtained from two independent experiments. (B) Comparison of transduction efficiencies in MSCs with lentiviral vectors and with the MGIN oncoretroviral vector. Vector stocks previously titrated on HOS cells were used to transduce MSCs at various MOIs. Cells were incubated with unconcentrated lentiviral supernatants for 20 hours at 37ЊC in LTCM. MGIN vector stocks were concentrated by ultracentrifugation before transduction. The cells were analyzed by FACS 3 days later.
Journal of Virology, 2004
Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.
Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells
STEM CELLS, 2006
Human bone marrow (BM) mesenchymal stem/progenitor cells are potentially attractive targets for ex vivo gene therapy. The potential of lentiviral vectors for transducing BM mesenchymal cells was examined using a self-inactivating vector that expressed the green fluorescent protein (GFP) from an internal cytomegalovirus (CMV) promoter. This vector was compared with oncoretroviral vectors expressing GFP from the CMV promoter or a modified long-terminal repeat that had been optimized for long-term expression in stem cells. The percentage of GFP-positive cells was consistently higher following lentiviral versus oncoretroviral transduction, consistent with increased GFP mRNA levels and increased gene transfer efficiency measured by polymerase chain reaction and Southern blot analysis. In vitro GFP and FVIII expression lasted for several months post-transduction, although expression slowly declined. The transduced cells retained their stem/progenitor cell properties since they were still capable of differentiating along adipogenic and osteogenic lineages in vitro while maintaining high GFP and FVIII expression levels. Implantation of lentivirally transduced human BM mesenchymal cells using collagen scaffolds into immunodeficient mice resulted in efficient engraftment of gene-engineered cells and long-term transgene expression in vivo. These biocompatible BM mesenchymal implants represent a reversible, safe, and versatile protein delivery approach because they can be retrieved in the event of an unexpected adverse reaction or when expression of the protein of interest is no longer required. In conclusion, efficient gene delivery with lentiviral vectors in conjunction with the use of bioengineered reversible scaffolds improves the therapeutic prospects of this novel approach for gene therapy, protein delivery, or tissue engineering. STEM CELLS 2006
Human Gene Therapy Methods, 2013
Nonviral gene delivery to human mesenchymal stem/stromal cells (MSC) can be considered a very promising strategy to improve their intrinsic features, amplifying the therapeutic potential of these cells for clinical applications. In this work, we performed a comprehensive comparison of liposome-mediated gene transfer efficiencies to MSC derived from different human sources-bone marrow (BM MSC), adipose tissue-derived cells (ASC), and umbilical cord matrix (UCM MSC). The results obtained using a green fluorescent protein (GFP)encoding plasmid indicated that MSC isolated from BM and UCM are more amenable to genetic modification when compared to ASC as they exhibited superior levels of viable, GFP + cells 48 hr post-transfection, 58 -7.1% and 54 -3.8%, respectively, versus 33 -4.7%. For all cell sources, high cell recoveries (&50%) and viabilities (> 85%) were achieved, and the transgene expression was maintained for 10 days. Levels of plasmid DNA uptake, as well as kinetics of transgene expression and cellular division, were also determined. Importantly, modified cells were found to retain their characteristic immunophenotypic profile and multilineage differentiation capacity. By using the lipofection protocol optimized herein, we were able to maximize transfection efficiencies to human MSC (maximum of 74% total GFP + cells) and show that lipofection is a promising transfection strategy for MSC genetic modification, especially when a transient expression of a therapeutic gene is required. Importantly, we also clearly demonstrated that intrinsic features of MSC from different sources should be taken into consideration when developing and optimizing strategies for MSC engineering with a therapeutic gene.
The use of lentiviral vectors to obtain transgenic rats
Methods in molecular biology (Clifton, N.J.), 2010
Lentiviral vectors are now well recognized as good vehicles for gene delivery. This is because they can efficiently transduce both dividing and post-mitotic cells, and stably integrate into the host genome allowing for long-term expression of the transgene. Their potential utility for the generation of transgenic animals has been recognized as an attractive and promising alternative to the conventional DNA-microinjection method which lacks efficiency. The initial success of lentiviral transgenesis in mice considerably broadened its use in other species, in which classical transgenic techniques are difficult, such as in the rat.In this chapter, we describe detailed procedures for both the production of human immunodeficiency virus-1 (HIV-1)-derived lentiviral vectors and for the generation of transgenic rats by injection of these vectors into the perivitelline space of fertilized one-cell eggs.
Genotypic Features of Lentivirus Transgenic Mice
Journal of Virology, 2008
Lentivector-mediated transgenesis is increasingly used, whether for basic studies as an alternative to pronuclear injection of naked DNA or to test candidate gene therapy vectors. In an effort to characterize the genetic features of this approach, we first measured the frequency of germ line transmission of individual proviruses established by infection of fertilized mouse oocytes. Seventy integrants from 11 founder (G0) mice were passed to 111 first generation (G1) pups, for a total of 255 events corresponding to an average rate of transmission of 44%. This implies that integration had most often occurred at the one- or two-cell stage and that the degree of genotypic mosaicism in G0 mice obtained through this approach is generally minimal. Transmission analysis of eight individual proviruses in 13 G2 mice obtained by a G0-G1 cross revealed only 8% of proviral homozygosity, significantly below the 25% expected from purely Mendelian transmission, suggesting counter-selection due to i...