A mobile one-lead ECG device incorporated in a symptom-driven remote arrhythmia monitoring program. The first 5,982 Hartwacht ECGs (original) (raw)
2018, Netherlands Heart Journal
Background In recent years many mobile devices able to record health-related data in ambulatory patients have emerged. However, well-organised programs to incorporate these devices are sparse. Hartwacht Arrhythmia (HA) is such a program, focusing on remote arrhythmia detection using the AliveCor Kardia Mobile (KM) and its algorithm. Objectives The aim of this study was to assess the benefit of the KM device and its algorithm in detecting cardiac arrhythmias in a real-world cohort of ambulatory patients. Methods All KM ECGs recorded in the HA program between January 2017 and March 2018 were included. Classification by the KM algorithm was compared with that of the Hartwacht team led by a cardiologist. Statistical analyses were performed with respect to detection of sinus rhythm (SR), atrial fibrillation (AF) and other arrhythmias. Results 5,982 KM ECGs were received from 233 patients (mean age 58 years, 52% male). The KM algorithm categorised 59% as SR, 22% as possible AF, 17% as unclassified and 2% as unreadable. According to the Hartwacht team, 498 (8%) ECGs were uninterpretable. Negative predictive value for detection of AF was 98%. However, positive predictive value as well as detection of other arrhythmias was poor. In 81% of