Development and investigation of novel solid self-nanoemulsifying system loaded with hydrochlorothiazide for the treatment of hypertension (original) (raw)
2018, International Journal of Pharmaceutical Investigation
Delivering drugs via oral route represents the most widely and convenient route being the easiest in administration, the most compliant for the patient, in addition to, the possibility to design many dosage forms. Moreover, it is the most economical, especially that, it is characterized by the least sterility constraints. However, the major challenge with the formulation of oral dosage forms lies with their poor oral bioavailability. Various factors such as poor aqueous solubility, lower drug permeability, Objective: The present study was aimed at formulating and evaluating a novel solid self-nano emulsifying drug delivery system (SNEDDS) to increase the solubility and bioavailability of hydrochlorothiazide (HCZ). Enhancing both solubility and bioavailability of drugs remain the cornerstone for achieving successful outcomes of delivery systems. Furthermore, employing nanotechnology-based formulations such as SNEDDS offers important advantage; the most important is the protection of the drug from enzymatic or chemical degradation. Materials and Methods: Liquid SNEDDS (L-SNEDDS) was prepared by adding a drug to oil, surfactant, and co-surfactant and heated up to at 60°C under continuous stirring. Solid SNEDDS (S-SNEDDS) was prepared by mixing L-SNEDDS with microcrystalline cellulose in 1:1 proportion. Results: The scanning electron microscopy showed that S-SNEDDS was spherical with an average particle size of 66.9 nm and 69.2 nm for both L-SNEDDS and S-SNEDDS, respectively. Ex vivo skin permeation study indicated that 100% drug was released from both the L-SNEDDS and S-SNEDDS formulation SF3 in 3 h. Analysis of variance test showed significant differences (Moderately significant P < 0.01) in the values when compared to a marketed product. Conclusion: The prepared S-SNEDDS helped in improving the solubility of the poorly soluble HCZ, which is a step forward toward bioavailability enhancement and thus increased therapeutic efficacy of the drug.