Detecting Smartwatch-Based Behavior Change in Response to a Multi-Domain Brain Health Intervention (original) (raw)

Intra-day Activity Better Predicts Chronic Conditions

ArXiv, 2016

In this work we investigate intra-day patterns of activity on a population of 7,261 users of mobile health wearable devices and apps. We show that: (1) using intra-day step and sleep data recorded from passive trackers significantly improves classification performance on self-reported chronic conditions related to mental health and nervous system disorders, (2) Convolutional Neural Networks achieve top classification performance vs. baseline models when trained directly on multivariate time series of activity data, and (3) jointly predicting all condition classes via multi-task learning can be leveraged to extract features that generalize across data sets and achieve the highest classification performance.

Brain Activation in Response to Personalized Behavioral and Physiological Feedback From Self-Monitoring Technology: Pilot Study

Journal of medical Internet research, 2017

The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people's brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Identify regions of the brain activated and examine associations between activation and behavior. This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to thi...

Predicting Wearing-Off of Parkinson’s Disease Patients Using a Wrist-Worn Fitness Tracker and a Smartphone: A Case Study

Applied Sciences, 2021

Parkinson’s disease (PD) patients experience varying symptoms related to their illness. Therefore, each patient needs a tailored treatment program from their doctors. One approach is the use of anti-PD medicines. However, a “wearing-off” phenomenon occurs when these medicines lose their effect. As a result, patients start to experience the symptoms again until their next medicine intake. In the long term, the duration of “wearing-off” begins to shorten. Thus, patients and doctors have to work together to manage PD symptoms effectively. This study aims to develop a prediction model that can determine the “wearing-off” of anti-PD medicine. We used fitness tracker data and self-reported symptoms from a smartphone application in a real-world environment. Two participants wore the fitness tracker for a month while reporting any symptoms using the Wearing-Off Questionnaire (WoQ-9) on a smartphone application. Then, we processed and combined the datasets for each participant’s models. Our ...

Sensing Behavioral Change over Time

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018

Personality traits describe individual differences in patterns of thinking, feeling, and behaving ("between-person" variability). But individuals also show changes in their own patterns over time ("within-person" variability). Existing approaches to measuring within-person variability typically rely on self-report methods that do not account for fine-grained behavior change patterns (e.g., hour-by-hour). In this paper, we use passive sensing data from mobile phones to examine the extent to which within-person variability in behavioral patterns can predict self-reported personality traits. Data were collected from 646 college students who participated in a self-tracking assignment for 14 days. To measure variability in behavior, we focused on 5 sensed behaviors (ambient audio amplitude, exposure to human voice, physical activity, phone usage, and location data) and computed 4 within-person variability features (simple standard deviation, circadian rhythm, regulari...

Leveraging Mobile-Based Sensors for Clinical Research to Obtain Activity and Health Measures for Disease Monitoring, Prevention, and Treatment

Frontiers in Digital Health

Clinical researchers are using mobile-based sensors to obtain detailed and objective measures of the activity and health of research participants, but many investigators lack expertise in integrating wearables and sensor technologies effectively into their studies. Here, we describe the steps taken to design a study using sensors for disease monitoring in older adults and explore the benefits and drawbacks of our approach. In this study, the Geriatric Acute and Post-acute Fall Prevention Intervention (GAPcare), we created an iOS app to collect data from the Apple Watch's gyroscope, accelerometer, and other sensors; results of cognitive and fitness tests; and participant-entered survey data. We created the study app using ResearchKit, an open-source framework developed by Apple for medical research that includes neuropsychological tests (e.g., of executive function and memory), gait speed, balance, and other health assessments. Data is transmitted via an Application Programming I...