Quantum and classical IR spectra of (HCOOH)2, (DCOOH)2 and (DCOOD)2 using ab initio potential energy and dipole moment surfaces (original) (raw)
Abstract
Full-dimensional (24 modes) quantum calculation of the IR spectrum of (DCOOD)2, and comparison with classical MD one.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (58)
- J. M. Bowman, T. Carrington and H.-D. Meyer, Mol. Phys., 2008, 106, 2145-2182.
- O. Christiansen, Phys. Chem. Chem. Phys., 2012, 14, 6672- 6687.
- A. G. Csaszar, C. Fabri, T. Szidarovszky, E. Matyus, T. Furten- bacher and G. Czako, Phys. Chem. Chem. Phys., 2012, 14, 1085-1106.
- J. Tennyson, J. Chem. Phys., 2016, 145, 120901.
- T. C. Jr., J. Chem. Phys., 2017, 146, 120902.
- C. Qu, Q. Yu and J. M. Bowman, Annu. Rev. Phys. Chem., 2018, 69, 6.1-6.25.
- X. Huang, B. J. Braams and J. M. Bowman, J. Chem. Phys, 2005, 122, 044308.
- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem., 2009, 28, 577-606.
- A. Witt, S. D. Ivanov, M. Shiga, H. Forbert and D. Marx, J. Chem. Phys., 2009, 130, 194510.
- N.-T. Van-Oanh, C. Falvo, F. Calvo, D. Lauvergnat, M. Basire, M.-P. Gaigeot and P. Parneix, Phys. Chem. Chem. Phys., 2012, 14, 2381-2390.
- M. Thomas, M. Brehm, R. Fligg, P. Vohringer and B. Kirchner, Phys. Chem. Chem. Phys., 2013, 15, 6608-6622.
- D. R. Galimberti, A. Milani, M. Tommasini, C. Castiglioni and M.-P. Gaigeot, J. chem. Theory Comput., 2017, 13, 3802- 3813.
- J. M. Bowman, J. Chem. Phys., 1978, 68, 608.
- K. M. Christoffel and J. M. Bowman, Chem. Phys. Lett., 1982, 85, 220.
- S. Carter, S. J. Culik and J. M. Bowman, J. Chem. Phys., 1997, 107, 10458-10469.
- J. M. Bowman, S. Carter and X. Huang, Int. Rev. Phys. Chem., 2003, 22, 533.
- X. Wang, S. Carter and J. M. Bowman, J. Phys. Chem. A, 2015, 119, 11632-11640.
- Ö. Birer and M. Havenith, Annu. Rev. Phys. Chem., 2009, 60, 263-275.
- Y. Zhang, W. Li, W. Luo, Y. Zhu and C. Duan, J. Chem. Phys., 2017, 146, 244306.
- F. Ito and T. Nakanaga, Chem. Phys. Lett., 2000, 318, 571- 577.
- F. Ito and T. Nakanaga, Chem. Phys., 2002, 277, 163-169.
- R. Georges, M. Freytes, D. Hurtmans, I. Kleiner, J. Vander Auwera and M. Herman, Chem. Phys., 2004, 305, 187-196.
- M. W. Nydegger, W. Rock and C. M. Cheatum, Phys. Chem. Chem. Phys., 2011, 13, 6098-6104.
- K. Mackeprang, Z. H. Xu, Z. Maroun, M. Meuwly and H. G. Kjaergaard, Phys. Chem. Chem. Phys., 2016, 18, 24654- 24662.
- P. Zielke and M. A. Suhm, Phys. Chem. Chem. Phys., 2007, 9, 4528-4534.
- G. M. Florio, T. S. Zwier, E. M. Myshakin, K. D. Jordan and E. L. Sibert, J. Chem. Phys., 2003, 118, 1735-1746.
- Z. Xue and M. A. Suhm, J. Chem. Phys., 2009, 131, 054301.
- G. L. Barnes and E. L. Sibert, J. Mol. Spectrosc., 2008, 249, 78-85.
- Y. H. Yoon, M. L. Hause, A. S. Case and F. F. Crim, J. Chem. Phys., 2008, 128, 084305.
- N. Shida, P. F. Barbara and J. E. Almlöf, J. Chem. Phys., 1991, 94, 3633.
- Y. Kim, J. Am. Chem. Soc., 1996, 118, 1522-1528.
- T. Loerting and K. R. Liedl, J. Am. Chem. Soc., 1998, 120, 12595-12600.
- S. Miura, M. E. Tuckerman and M. L. Klein, Chem. Phys., 1998, 109, 5290-5299.
- M. V. Vener, O. Kühn and J. M. Bowman, Chem. Phys. Lett., 2001, 349, 562-570.
- H. Ushiyama and K. Takatsuka, J. Chem. Phys., 2001, 115, 5903-5912.
- C. S. Tautermann, A. F. Voegele and K. R. Liedl, J. Chem. Phys., 2004, 120, 631.
- Z. Smedarchina, A. Fernández-Ramos and W. Siebrand, Chem. Phys. Lett., 2004, 395, 339-345.
- P. R. L. Markwick, N. L. Doltsinis and D. Marx, J. Chem. Phys., 2005, 122, 054112.
- F. Fillaux, Chem. Phys. Lett., 2005, 408, 302-306.
- G. V. Mil'nikov, O. Kühn and H. Nakamura, J. Chem. Phys., 2005, 123, 074308.
- D. Luckhaus, J. Phys. Chem. A, 2006, 110, 3151-3158.
- C. Burisch, P. R. L. Markwick, N. L. Doltsinis and J. Schlitter, J. Chem. Theory Comput., 2008, 4, 164-172.
- I. Matanović, N. Došlić and B. R. Johnson, J. Chem. Phys., 2008, 128, 084103.
- D. Luckhaus, Phys. Chem. Chem. Phys., 2010, 12, 8357-8361.
- S. D. Ivanov, I. M. Grant and D. Marx, J. Chem. Phys., 2015, 143, 124304.
- A. Jain and E. L. Sibert, J. Chem. Phys., 2015, 142, 084115.
- C. Qu and J. M. Bowman, Phys. Chem. Chem. Phys., 2016, 18, 24835.
- J. O. Richardson, Phys. Chem. Chem. Phys., 2017, 19, 966- 970.
- Y.-T. Chang, Y. Yamaguchi, W. H. Miller and H. F. Schaefer, J. Am. Chem. Soc., 1987, 109, 7245-7253.
- I. Matanović and N. Došlić, Chem. Phys., 2007, 338, 121-126.
- G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, I. Y. Doroshenko, V. Sablinskas, V. Pogorelov, D. Dovgal and V. Balevicius, Vib. Spectrosc., 2015, 79, 67-75.
- C. Qu and J. M. Bowman, J. Chem. Phys., 2018, 148, 241713.
- J. K. G. Watson, Mol. Phys., 1968, 15, 479.
- T. Esser, H. Knorke, R. Asmis, Knut, W. Schöllkopf, Q. Yu, C. Qu, M. Bowman, Joel and M. Kaledin, J. Phys. Chem. Lett., 2018, 9, 798-803.
- W. L. Hase, in Encyclopeida of Computational Chemistry, ed. N. L. Allinger, Wiley: New York, 1998, vol. 1, pp. 399-407.
- I. Reva, A. Plokhotnichenko, E. Radchenko, G. Sheina and Y. Blagoi, Spectrochim. Acta A, 1994, 50, 1107 -1111.
- E. Miliordos and S. S. Xantheas, J. Chem. Phys., 2015, 142, 094311.
- Full-dimensional (24 modes) quantum calculation of the IR spec- trum of (DCOOD) 2 , and comparison with classical MD one.