Fixed-Point Approximations of Generalized Nonexpansive Mappings via Generalized M-Iteration Process in Hyperbolic Spaces (original) (raw)
In this paper, we propose the generalized M-iteration process for approximating the fixed points from Banach spaces to hyperbolic spaces. Using our new iteration process, we prove Δ-convergence and strong convergence theorems for the class of mappings satisfying the condition Cλ and the condition E which is the generalization of Suzuki generalized nonexpansive mappings in the setting of hyperbolic spaces. Moreover, a numerical example is given to present the capability of our iteration process and the solution of the integral equation is also illustrated using our main result.