Draft genome sequence of Geobacillus yumthangensis AYN2 sp. nov., a denitrifying and sulfur reducing thermophilic bacterium isolated from the hot springs of Sikkim (original) (raw)

Complete Genome Sequence of Geobacillus strain Y4.1MC1, a Novel CO-Utilizing Geobacillus thermoglucosidasius Strain Isolated from Bath Hot Spring in Yellowstone National Park

Geobacillus thermoglucosidasius Y4.1MC1 was isolated from a boiling spring in the lower geyser basin of Yellowstone National Park. This species is of interest because of its metabolic versatility. The genome consists of one circular chromosome of 3,840,330 bp and a circular plasmid of 71,617 bp with an average GC content of 44.01%. The genome is available in the GenBank database (NC_014650.1 and NC_014651.1). In addition to the expected metabolic pathways for sugars and amino acids, the Y4.1MC1 genome codes for two separate carbon monoxide utilization pathways, an aerobic oxidation pathway and the anaerobic reductive acetyl-CoA (Wood-Ljungdahl) pathway. This is the first report of a non-anaerobic organism with the Wood-Ljungdahl pathway. This anaerobic pathway permits the strain to utilize H2 and fix CO2 present in the hot spring environment. Y4.1MC1 and its related species may play a significant role in carbon capture and sequestration in thermophilic ecosystems and may open up new routes to produce biofuels and chemicals from CO, H2 and CO2.

{"__content__"=>"High Quality Draft Genomes of the Type Strains thermocatenulatus DSM 730, DSM 23175 And DSM 18751.", "i"=>[{"__content__"=>"Geobacillus"}, {"__content__"=>"G. uzenensis"}, {"__content__"=>"Parageobacillus galactosidasius"}], "sup"=>[{"__content__"=>"T"}, {"__content__"=>"T"}, {"_...

Journal of genomics, 2018

The thermophilic 'Geobacilli' are important sources of thermostable enzymes and other biotechnologically relevant macromolecules. The present work reports the high quality draft genome sequences of previously unsequenced type strains of (DSM 23175), (DSM 730) and (DSM 18751). Phylogenomic analyses revealed that DSM 18751 and DSM 23175 represent later heterotypic synonyms of and , respectively, while DSM 730 represents the type strain for the species . These genome sequences will contribute towards a deeper understanding of the ecological and biological diversity and the biotechnological exploitation of the 'geobacilli'.

Draft genome assembly data of Anoxybacillus sp. strain MB8 isolated from Tattapani hot springs, India

2021

Discovery of novel thermophiles has shown promising applications in the field of biotechnology. Due to their thermal stability, they can survive the harsh processes in the industries, which make them important to be characterized and studied. Members of Anoxybacillus are alkaline tolerant thermophiles and have been extensively isolated from manure, dairy-processed plants, and geothermal hot springs. This article reports the assembled data of an aerobic bacterium Anoxybacillus sp. strain MB8, isolated from the Tattapani hot springs in Central India, where the 16S rRNA gene shares an identity of 97% (99% coverage) with Anoxybacillus kamchatkensis strain G10. The de novo assembly and annotation performed on the genome of Anoxybacillus sp. strain MB8 comprises of 2,898,780 bp (in 190 contigs) with a GC content of 41.8% and includes 2,976 protein-coding genes,1 rRNA operon, 73 tRNAs, 1 tm-RNA and 10 CRISPR arrays. The predicted protein-coding genes have been classified into 21 eggNOG cat...

Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park

Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.

Whole-Genome Sequence Data Analysis of Anoxybacillus kamchatkensis NASTPD13 Isolated from Hot Spring of Myagdi, Nepal

BioMed Research International, 2021

Anoxybacillus kamchatkensis NASTPD13 isolated from Paudwar hot spring of Myagdi, Nepal, upon morphological and biochemical analysis revealed to be Gram-positive, straight or slightly curved, rod-shaped, spore-forming, catalase, and oxidase-positive facultative anaerobes. It grows over a wide range of pH (5.0-11) and temperature (37-75°C), which showed growth in different reduced carbon sources such as starch raffinose, glucose, fructose, inositol, trehalose, sorbitol, mellobiose, and mannitol in aerobic conditions. Furthermore, the partial sequence obtained upon sequencing showed 99% sequence similarity in 16S rRNA gene sequence with A. kamchatkensis JW/VK-KG4 and was suggested to be Anoxybacillus kamchatkensis. Moreover, whole-genome analysis of NASTPD13 revealed 2,866,796 bp genome with a G+C content of 41.6%. Analysis of the genome revealed the presence of 102 RNA genes, which includes sequences coding for 19 rRNA and 79 tRNA genes. While the 16S rRNA gene sequence of strain NAST...

Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring

International Journal of Systematic and Evolutionary Microbiology, 2014

A Gram-reaction-positive, motile, thermophilic spore-forming strain, G1w1T, was isolated from a hot spring of the Valley of Geysers, Kamchatka (Russia). Based on data from the present polyphasic taxonomic study, including phylogenetic analysis of 16S rRNA and spo0A gene sequences, the strain is considered to represent a novel species of the genus Geobacillus , for which the name Geobacillus icigianus sp. nov. is proposed. The type strain is G1w1T ( = VKM B-2853T = DSM 28325T).

Genome of a thermophilic bacterium Geobacillus sp. TFV3 from Deception Island, Antarctica

2020

Thermophilic microorganisms have always been an important part of the ecosystem, particularly in a hot environment, as they play a key role in nutrient recycling at high temperatures where most microorganisms cannot cope. While most of the thermophiles are archaea, thermophiles can also be found among some species of bacteria. These bacteria are very useful in the fundamental study of heat adaptation, and they are also important as potential sources of thermostable enzymes and metabolites. Recently, we have isolated a Gram-positive thermophilic bacterium, Geobacillus sp. TFV3 from a volcanic soil sample from Deception Island, Antarctica. This project was undertaken to analyze the genes of this thermophilic Antarctic bacterium and to determine the presence of thermal-stress adaptation proteins in its genome. The genome of Geobacillus sp. TFV3 was first purified, sequenced, assembled, and annotated. The complete genome was found to harbor genes encoding for useful thermal-stress adapt...

Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus

Nucleic Acids Research, 2004

We present herein the first complete genome sequence of a thermophilic Bacillus-related species, Geobacillus kaustophilus HTA426, which is composed of a 3.54 Mb chromosome and a 47.9 kb plasmid, along with a comparative analysis with five other mesophilic bacillar genomes. Upon orthologous grouping of the six bacillar sequenced genomes, it was found that 1257 common orthologous groups composed of 1308 genes (37%) are shared by all the bacilli, whereas 839 genes (24%) in the G.kaustophilus genome were found to be unique to that species. We were able to find the first prokaryotic sperm protamine P1 homolog, polyamine synthase, polyamine ABC transporter and RNA methylase in the 839 unique genes; these may contribute to thermophily by stabilizing the nucleic acids. Contrasting results were obtained from the principal component analysis (PCA) of the amino acid composition and synonymous codon usage for highlighting the thermophilic signature of the G.kaustophilus genome. Only in the PCA of the amino acid composition were the Bacillus-related species located near, but were distinguishable from, the borderline distinguishing thermophiles from mesophiles on the second principal axis. Further analysis revealed some asymmetric amino acid substitutions between the thermophiles and the mesophiles, which are possibly associated with the thermoadaptation of the organism.

Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench

Extremophiles, 2004

The thermophilic strains HTA426 and HTA462 isolated from the Mariana Trench were identified as Geobacillus kaustophilus and G. stearothermophilus, respectively, based on physiologic and phylogenetic analyses using 16S rDNA sequences and DNA-DNA relatedness. The genome size of HTA426 and HTA462 was estimated at 3.23-3.49 Mb and 3.7-4.49 Mb, respectively. The nucleotide sequences of three independent k-phage inserts of G. stearothermophilus HTA462 have been determined. The organization of protein coding sequences (CDSs) in the two k-phage inserts was found to differ from that in the contigs corresponding to each k insert assembled by the shotgun clones of the G. kaustophilus HTA426 genome, although the CDS organization in another k insert is identical to that in the HTA426 genome.