Impact of COVID-19 on spatio-temporal variation of aerosols and air pollutants concentration over India derived from MODIS, OMI and AIRS (original) (raw)

Nationwide CoViD-19 lockdown impact on air quality in India

MAUSAM

This paper discusses the comparative results of surface and satellite measurements made during the Phase1 (25 March to 14 April), Phase2 (15 April to 3 May) and Phase3 (3 May to 17May) of Covid-19 imposed lockdown periods of 2020 and those of the same locations and periods during 2019 over India. These comparative analyses are performed for Indian states and Tier 1 megacities where economic activities have been severely affected with the nationwide lockdown. The focus is on changes in the surface concentration of sulfur dioxide (SO2), carbon monoxide (CO), PM2.5 and PM10, Ozone (O3), Nitrogen dioxide (NO2) and retrieved columnar NO2 from TROPOMI and Aerosol Optical Depth (AOD) from MODIS satellite. Surface concentrations of PM2.5 were reduced by 30.59%, 31.64% and 37.06%, PM10 by 40.64%, 44.95% and 46.58%, SO2 by 16.73%, 12.13% and 6.71%, columnar NO2 by 46.34%, 45.82% and 39.58% and CO by 45.08%, 41.51% and 60.45% during lockdown periods of Phase1, Phase2 and Phase3 respectively ...

COVID-19 Lockdown and the Aerosphere in India: Lessons Learned on How to Reduce Air Pollution

Biotechnology to Combat COVID-19 [Working Title], 2021

The giant increase in COVID-19 infection across India forced the government to impose strict lockdown in order to curb the pandemic. Although the stringent restrictions crippled India’s economy and poor people’s livelihood, it significantly improved the air quality of most of the polluted cities of India and rejuvenated the atmosphere. Thus, the major objective of this study is to provide a comprehensive overview of lockdown on pollutants prevailing in the atmosphere. A prominent decline in primary pollutants such as Particulate matter (PM), Black carbon (BC), Oxides of nitrogen (NOx), Carbon monoxide (CO) is observed across the country. However, lockdown had a trifling impact on Sulphur dioxide (SO2) concentration over some parts of India due to the constant operation of coal-fired thermal plants as a part of essential service. Furthermore, the sudden decline in NOx concentration disturbed the complex atmospheric chemistry and lead to an enhancement of surface ozone (O3) (secondary...

Temporary reduction in air pollution due to anthropogenic activity switch-off during COVID-19 lockdown in northern parts of India

Environment, Development and Sustainability

Due to fast and deadly spread of corona virus (COVID-19), the Government of India implemented lockdown in the entire country from 25 April 2020. So, we studied the differences in the air quality index (AQI) of Delhi (DTU, Okhla and Patparganj), Haryana (Jind, Palwal and Hisar) and Uttar Pradesh (Agra, Kanpur and Greater Noida) from 17 February 2020 to 4 May 2020. The AQI was calculated by combination of individual sub-indices of seven pollutants, namely PM 2.5 , PM 10 , NO 2 , NH 3 , SO 2 , CO and O 3 , collected from the Central Pollution Control Board website. The AQI has improved by up to 30-46.67% after lockdown. The AQI slope values − 1.87, − 1.70 and − 1.35 were reported for Delhi, − 1.11, − 1.31 and − 1.04 were observed for Haryana and − 1.48, − 1.79 and − 1.78 were found for Uttar Pradesh (UP), which may be attributed to limited access of transportation and industrial facilities due to lockdown. The ozone (O 3) concentration was high at Delhi because of lesser greenery as compared to UP and Haryana, which provides higher atmospheric temperature favourable for O 3 formation. The air mass back trajectory (AMBT) analysis reveals the contribution of air mass from Europe, Africa and Gulf countries as well as local emissions from Indo-Gangetic Plain, Madhya Pradesh and Maharashtra states of India.

Classification and transformation of aerosols over selected Indian cities during reduced emissions under Covid-19 lockdown

Journal of Earth System Science

Studies in the recent past show improved air quality over India during the Covid-19 lockdown. This research attempts to characterize atmospheric aerosols in terms of a and AOD and their transformation over India during the pandemic lockdown. The type and particle distribution of aerosols, including gaseous species for Bve Indian regions were considered. Fine to coarse particle shift was observed in most regions. The northern region observed high Bre counts, implying crop residue burning season during the stringent lockdown. Thiruvananthapuram, in the south, showed an increase in PM, owing to the resumption of mobility post-lockdown. Hyderabad, however; observed increased PM 2.5 (2.79%) and AOD (37.23%) during Phase 1. Maritime (MT) aerosol predominated over Thiruvananthapuram, whereas urban/biomass burning (UBB) type decreased over the eastern region. Contributions from continental average (CA), maritime continental average (MCA), and MT were observed over Hyderabad, post-lockdown. In the central region, MCA was replaced by UBB and mixed type, with isolated episodes of clean continental (CC) and desert dust (DD). During lockdown phases, an increase in O 3 over western, northern, and central regions is attributed to increased temperature and decreased NO 2. A significant correlation with population density (PD) exists with NO 2 (R 2 = 0.75; p \ 0.05), suggesting human mobility as a major contributor to NO 2 in the atmosphere during the lockdown period.

Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India☆

2020

Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM2.5 and PM10) and gaseous pollutants (NO2, O3, CO, and SO2) during lockdown (25th March – 3rd MHA, 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM2.5, PM10, NO2, and CO has been found in all the regions during the lockdown. SO2 showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O3 also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM2.5, PM10, and NO2 was observed during peak morning traffic hours (08-10 Hrs) and late evening (20-24 Hrs), but the percentage reduction is almost constant throughout the day. A significant dec...

Effects of COVID-19 lockdown phases in India: an atmospheric perspective

Environment, Development and Sustainability, 2021

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus. It was first identified in December 2019 in Wuhan, Hubei, China, and has resulted in an ongoing pandemic. As of 5 July 2020, more than 11.1 million cases have been reported across 188 countries and territories, resulting in more than 528,000 deaths. More than 6.03 million people have recovered. The entire world population currently faces enormous challenges (i.e., social, environmental, health, and economic) due to the impact of COVID-19. In this regard, the affected countries are now trying to slow down the virus's transmission through social-distancing, lockdowns, increasing the number of tests and treatment facilities. There have been four lockdowns (25 March 2020-31 May 2020), and two unlock periods (1 June-31 July 2020) in India. Aerosol Optical Depth (AOD) has been analyzed using MODIS satellite data during various phases of lockdowns over India. With the implementation of lockdown steps, AOD values dropped significantly over various regions. A significant reduction in AOD over the North-Central regions (up to −50%) compared to the regions in the South or Northeast India. The AOD over these regions was significantly affected by the lock/unlock phases. It was also observed that there was a considerable buildup of AOD during the pre-lockdown period in the year 2020 as compared to the past two years.

COVID-19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data

Heliyon, 2020

The World Health Organization has declared the COVID-19 pandemic a global public health emergency. Many countries of the world, including India, closed their borders and imposed a nationwide lockdown. In India, the lockdown was declared on March 24 for 21 days (March 25-April 14, 2020) and was later extended until May 3, 2020. During the lockdown, all major anthropogenic activities, which contribute to atmospheric pollution (such as industries, vehicles, and businesses), were restricted. The current study examines the impact of the lockdown on tropospheric NO 2 concentrations. Satellite-based ozone monitoring instrument sensor data were analyzed in order to investigate the variations in tropospheric NO 2 concentrations. The results showed that from March 1 to 21, 2020, the average tropospheric NO 2 concentration was 214.4 Â10 13 molecule cm À2 over India, and it subsequently decreased by 12.1% over the next four weeks. An increase of 0.8% in tropospheric NO 2 concentrations was observed for the same period in 2019 and hence, the reduced tropospheric NO 2 concentrations can be attributed to restricted anthropogenic activities during the lockdown. In the absence of significant activities, the contribution of various sources was estimated, and the emissions from biomass burning were identified as a major source of tropospheric NO 2 during the lockdown. The findings of this study provide an opportunity to understand the mechanism of tropospheric NO 2 emissions over India, in order to improve air quality modeling and management strategies.

The impact of COVID-19 as a necessary evil on air pollution in India during the lockdown

Environmental Pollution, 2020

The study objective is to contemplate the effectiveness of COVID-19 on the air pollution of Indian territory from January 2020 to April 2020. We have executed data from European Space Agency (ESA) and CPCB online portal for air quality data dissemination. The Sentinel e 5 P satellite images elucidate that the Air quality of Indian territory has been improved significantly during COVID-19. Mumbai and Delhi are one of the most populated cities. These two cities have observed a substantial decrease in Nitrogen Dioxide (40e50%) compared to the same period last year. It suggests that the emergence of COVID-19 has been proved to a necessary evil as being advantageous for mitigating air pollution on Indian territory during the lock-down. The study found a significant decline in Nitrogen Dioxide in reputed states of India, i.e., Delhi and Mumbai. Moreover, a faded track of Nitrogen Dioxide can be seen at the Maritime route in the Indian Ocean. An upsurge in the environmental quality of India will also be beneficial for its neighbor countries, i.e., China, Pakistan, Iran, and Afghanistan.

Improved air quality during COVID-19 at an urban megacity over the Indo-Gangetic Basin: From stringent to relaxed lockdown phases

Urban Climate

The enforced lockdown amid COVID-19 pandemic eased anthropogenic activities across India. The satellite-derived aerosol optical depth (AOD) and absorption AOD showed a significant reduction of ~30% over the Indo-Gangetic Basin (IGB) in north India during the lockdown period in 2020 with respect to the previous year 2019, when no such lockdown was in effect. Further, near-surface air pollutants were investigated at an urban megacity Delhi during 01 March to 31 May 2020. Except O 3 , a drastic reduction in PM 10 , PM 2.5 , NO, NO 2 and CO concentrations were observed by ~58%, 47%, 76%, 68% and 58%, respectively during the lockdown period of 2020 as compared to 2019. While, O 3 was low in the initial phase and gradually increased with progression of lockdown phases, the mean O 3 during the entire lockdown period was nearly similar in both the years. Though, all the measured pollutants showed significant reduction during the entire lockdown, a phase-wise enhancement, associated with the conditional relaxations was observed in their concentrations. Thus, the present results may help, not only to assess the impact of outbreak on air quality, but also in designing the mitigation policies in urban megacities in more efficient ways to combat the air pollution problems.