CLEF 2022 : Learning to Quantify (original) (raw)

2021

Abstract

LeQua 2022 is a new lab for the evaluation of methods for “learning to quantify” in textual datasets, i.e., for training predictors of the relative frequencies of the classes of interest in sets of unlabelled textual documents. While these predictions could be easily achieved by first classifying all documents via a text classifier and then counting the numbers of documents assigned to the classes, a growing body of literature has shown this approach to be suboptimal, and has proposed better methods. The goal of this lab is to provide a setting for the comparative evaluation of methods for learning to quantify, both in the binary setting and in the single-label multiclass setting. For each such setting we provide data either in ready-made vector form or in raw document form. 1 Learning to Quantify In a number of applications involving classification, the final goal is not determining which class (or classes) individual unlabelled items belong to, but estimating the prevalence (or “r...

Alejandro Moreo hasn't uploaded this paper.

Let Alejandro know you want this paper to be uploaded.

Ask for this paper to be uploaded.