Pulmonary hypertension in chronic obstructive and interstitial lung diseases (original) (raw)

Pulmonary Hypertension in Patients with Chronic Obstructive Pulmonary Disease

Drugs, 2009

Pulmonary hypertension (PH) is an important complication in the natural history of chronic obstructive pulmonary disease (COPD). Its presence is associated with reduced survival and greater use of healthcare resources. The prevalence of PH is high in patients with advanced COPD, whereas in milder forms it might not be present at rest but may develop during exercise. In COPD, PH is usually of moderate severity and progresses slowly, without altering right ventricular function in the majority of patients. Nevertheless, a small subgroup of patients (1-3%) may present with out-of-proportion PH, that is, with pulmonary arterial pressure largely exceeding the severity of airway impairment. These patients depict a clinical picture similar to more severe forms of PH and have higher mortality rates. PH in COPD is caused by the remodelling of pulmonary arteries, which is characterized by the intimal proliferation of poorly differentiated smooth muscle cells and the deposition of elastic and collagen fibres. The sequence of changes that lead to PH in COPD begins at early disease stages by the impairment of endothelial function, which is associated with impaired release of endothelium-derived vasodilating agents (nitric oxide, prostacyclin) and increased expression of growth factors. Products contained in cigarette smoke play a critical role in the initiation of pulmonary endothelial cell alterations. Recognition of PH can be difficult because symptoms due to PH are not easy to differentiate from the clinical picture of COPD. Suspicion of PH should be high if clinical deterioration is not matched by the decline in pulmonary function, and in the presence of profound hypoxaemia or markedly reduced carbon monoxide diffusing capacity. Patients with suspected PH should be evaluated by Doppler echocardiography and, if confirmed, undergo right-heart catheterization in those circumstances where the result of the procedure can determine clinical management. To date, long-term oxygen therapy is the treatment of choice in COPD patients with PH and hypoxaemia because it slows or reverses its progression. Conventional vasodilators are not recommended because of their potential detrimental effects on gas exchange, produced by the inhibition of hypoxic pulmonary vasoconstriction and their lack of effectiveness after long-term treatment. In the subgroup of patients with out-of-proportion PH, new specific therapy available for pulmonary arterial hypertension (PAH) [prostanoids, endothelin-1 receptor antagonists and phosphodiesterase-5 inhibitors] may be considered in the setting of clinical trials. The use of specific PAH therapy in COPD patients with moderate PH is discouraged because of the potential detrimental effect of some of these drugs on gas exchange and there are no data demonstrating their efficacy.

Update on pulmonary hypertension complicating chronic obstructive pulmonary disease

International Journal of Chronic Obstructive Pulmonary Disease, 2009

Pulmonary hypertension (PH) is the hemodynamic manifestation of various pathological processes that result in elevated pulmonary artery pressures (PAP). The National Institutes of Health Registry defined pulmonary arterial hypertension as the mean PAP of more than 25 mm Hg with a pulmonary capillary wedge pressure or left atrial pressure equal to or less than 15 mm Hg. This definition remains the currently accepted definition of PH that is used to define PH related to multiple clinical conditions including chronic obstructive pulmonary disease (COPD). The estimated US prevalence of COPD by the National Health Survey in 2002 in people aged >25 was 12.1 million. There is a lack of large population-based studies in COPD to document the correct prevalence of PH and outcome. The major cause of PH in COPD is hypoxemia leading to vascular remodeling. Echocardiogram is the initial screening tool of choice for PH. This simple noninvasive test can provide an estimate of right ventricular systolic and right atrial pressures. Right heart catheterization remains the gold standard to diagnose PH. It provides accurate measurement of mean PAP and pulmonary capillary wedge pressure. Oxygen therapy remains the cornerstone therapeutic for hypoxemia in COPD patients. Anecdotal reports suggest utility of PDE5-inhibitors and prostacyclin to treat COPD-related PH. Large randomized clinical trials are needed before the use of these drugs can be recommended.

Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease and Interstitial Lung Diseases

Seminars in Respiratory and Critical Care Medicine, 2009

Pulmonary hypertension (PH) related to chronic obstructive pulmonary disease (COPD) is part of Group III, as defined by the World Health Organization (WHO), which comprises the group of PH associated with lung disorders and hypoxemia, such as COPD, interstitial lung disease, sleep disordered breathing, and high altitude PH. Similar to other types of PH complicating various disorders, PH associated with COPD confers a poor prognosis. While PH associated with COPD has been a well-recognized entity, only recently has attention been focused toward understanding the epidemiology and characteristics of this form of PH. In this issue, we will examine characteristics of PH in COPD, describe similarities and differences with other forms of PH, and present current recommendations for diagnosis and management.

Updated Perspectives on Pulmonary Hypertension in COPD

International Journal of Chronic Obstructive Pulmonary Disease, 2020

Pulmonary hypertension (PH) is a frequent and important complication of chronic obstructive pulmonary disease (COPD). It is associated with worse clinical courses with more frequent exacerbation episodes, shorter survival, and greater need of health resources. PH is usually of moderate severity and progresses slowly, without altering right ventricular function in the majority of cases. Nevertheless, a reduced subgroup of patients may present disproportionate PH, with pulmonary artery pressure (PAP) largely exceeding the severity of respiratory impairment. These patients may represent a group with an exaggerated vascular impairment (pulmonary vascular phenotype) to factors that induce PH in COPD or be patients in whom idiopathic pulmonary arterial hypertension (PAH) coexist. The present review addresses the current definition and classification of PH in COPD, the distinction among the different phenotypes of pulmonary vascular disease that might present in COPD patients, and the therapeutic approach to PH in COPD based on the available scientific evidence.

Pulmonary hypertension in COPD: a review and consideration of the role of arterial vasodilators

COPD, 2009

The possibility that pulmonary hypertension (PH) may develop in patients with chronic obstructive pulmonary disease (COPD) is well established, but prevalence data vary. The current World Health Organization clinical classification includes COPD in diagnostic group III: PH associated with disorders of the respiratory system or hypoxemia. The National Institute of Health defines PH as a mean pulmonary artery pressure of greater than 25 mmHg. Approximately 10% of the patients seen over the last decade in the PH Clinic at Mayo Clinic in Jacksonville, Florida, have PH due to COPD. The pathophysiology is likely complex and involves hypoxic pulmonary vasoconstriction. Ultimately, chronic hypoxia results in vascular remodeling with narrowing of the vascular lumen. The right heart is forced to generate increased driving pressures to overcome the increased vascular resistance. As the disease progresses, cor pulmonale may develop. The mortality in this setting is increased with five-year surv...