Comments on “Reanalyses Suitable for Characterizing Long-Term Trends” (original) (raw)

Abstract

sparkles

AI

This note addresses the use of reanalysis data for understanding long-term climate trends, responding to critiques by Thorne and Vose (2010). It discusses the challenges of obtaining accurate climate representations due to data limitations and changing measurement techniques. Emphasizing the role of atmospheric models in reanalysis, the paper argues for the necessity of using robust models to improve data quality and highlights the importance of observing system experiments in minimizing model errors.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (19)

  1. Allen, R. J., and S. C. Sherwood, 2008: Warming maxi- mum in the tropical upper troposphere deduced from thermal winds. Nat. Geosci., 1, 399-403.
  2. Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.
  3. Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175-190.
  4. Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3323-3343.
  5. -, and S. Uppala, 2009: Variational bias correction in ERA-Interim. Quart. J. Roy. Meteor. Soc., 135, 3323-3343.
  6. Delsol, C., D. Dee, S. Uppala, N. Bormann, J.-N. Thepaut, and P. Bauer, 2008: Use of reprocessed AMVs in the ECMWF interim reanalysis. Proc. Ninth Int. Winds Workshop, Annapolis, MD, EUMETSAT, P.51. [Available online at www.eumetsat.int/ Home/Main/AboutEUMETSAT/Publications/ ConferenceandWorkshopProceedings/2008/ SP_1232700640055?l=en.]
  7. Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134, 1513-1525.
  8. Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 1377-1403.
  9. -, C. Gruber, S. Sperka, and C. Tavolato, 2008a: Homogenization of the global radiosonde tempera- ture and wind dataset using innovation statistics from reanalyses. Proc. Third WCRP Int. Conf. on Reanalysis, Tokyo, Japan, WCRP, G4.411. [Available online at http://wcrp.ipsl.jussieu.fr/Workshops/ Reanalysis2008/Documents/G4-411_ea.pdf.]
  10. -, C. Tavolato, and S. Sperka, 2008b: Toward elimination of the warm bias in historic radiosonde temperature records-Some new results from a comprehensive intercomparison of upper-air data. J. Climate, 21, 4587-4606.
  11. Kelly, G. A., and J.-N. Thépaut, 2007: Evaluation of the impact of the space component of the global observa- tion system through observing system experiments. ECMWF Newsletter, No. 113, ECMWF, Reading, United Kingdom, 16-28.
  12. Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 136, 1972-1990.
  13. Santer, B. D., and Coauthors, 2008: Consistency of mod- elled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28, 1703-1722.
  14. Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 1334-1337.
  15. Simmons, A. J., and Coauthors 2004: Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, D24115, doi:10.1029/2004JD005306.
  16. -, K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface at- mospheric humidity, temperature and precipitation: Inferences from reanalyses and monthly gridded observational datasets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.
  17. Thorne, P. W., and R. S. Vose, 2010: Reanalyses suitable for characterizing long-term trends: Are they really achievable? Bull. Amer. Meteor. Soc., 91, 353-361.
  18. Uppala, S. M., and Coauthors, 2005: The ERA-40 Reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961- 3012.
  19. Woodruff, S. D., H. F. Diaz, E. C. Kent, R. W. Reynolds, and S. J. Worley, 2008: The evolving SST record form ICOADS. S. Brönnimann et al., Eds., Climate Variability and Extremes during the Past 100 Years, Springer, 65-83.