Chitosan-based systems for molecular imaging (original) (raw)

A Review of the Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine

Nanomaterials

Chitosan is a fibrous compound derived from chitin, which is the second most abundant natural polysaccharide and is produced by crustaceans, including crabs, shrimps, and lobsters. Chitosan has all of the important medicinal properties, including biocompatibility, biodegradability, and hydrophilicity, and it is relatively nontoxic and cationic in nature. Chitosan nanoparticles are particularly useful due to their small size, providing a large surface-to-volume ratio, and physicochemical properties that may differ from that of their bulk counterparts; thus, chitosan nanoparticles (CNPs) are widely used in biomedical applications and, particularly, as contrast agents for medical imaging and as vehicles for drug and gene delivery into tumors. Because CNPs are formed from a natural biopolymer, they can readily be functionalized with drugs, RNA, DNA, and other molecules to target a desired result in vivo. Furthermore, chitosan is approved by the United States Food and Drug Administration...

International Journal of Biological Macromolecules Chitosan-based nanomaterials: A state-of-the-art review

This manuscript briefly reviews the extensive research as well as new developments on chitosan based nanomaterials for various applications. Chitosan is a biocompatible and biodegradable polymer having immense structural possibilities for chemical and mechanical modification to generate novel properties and functions in different fields especially in the biomedical field. Over the last era, research in functional biomaterials such as chitosan has led to the development of new drug delivery system and superior regenerative medicine, currently one of the most quickly growing fields in the area of health science. Chitosan is known as a biomaterial due to its biocompatibility, biodegradability, and non-toxic properties. These properties clearly point out that chitosan has greater potential for future development in different fields of science namely drug delivery, gene delivery, cell imaging, sensors and also in the treatment as well as diagnosis of some diseases like cancer. Chitosan based nanomaterials have superior physical and chemical properties such as high surface area, porosity, tensile strength, conductivity, photo-luminescent as well as increased mechanical properties as comparison to pure chitosan. This review highlights the recent research on different aspect of chitosan based nanomaterials, including their preparation and application.

Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications

Materials

Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attentio...

Lectin–Gd-Loaded Chitosan Hydrogel Nanoparticles: A New Biospecific Contrast Agent for MRI

Molecular Imaging and Biology, 2011

Purpose: Non-specific extracellular contrast agents have been on the market for more than 15 years. Here, we report on the synthesis of new selective lectin-gadolinium (Gd)-loaded chitosan nanoparticles with a prolonged clearance time and a much higher relaxivity in comparison to other preparations. Procedures: Chitosan nanoparticles were prepared from 85% deacetylated chitin by glutaraldehyde cross-linking of an aqueous acetic acid dispersion of chitosan in a mixture of n-hexane using sodium bis(ethylhexyl)sulfosuccinate as a surfactant. Results: Several crucial parameters, namely, the Gd and protein content of the nanoparticles, their size and dispersity were determined. Magnetic resonance measurements were carried out by intravenous perfusion of mono-disperse suspensions of the nanoparticles into mice. Conclusions: Chitosan nanoparticles can be used as contrast agents in magnetic resonance imaging (MRI). They are excellent candidates for controlled delivery of bioactive compounds to molecular targets and as biospecific diagnostic tools in MRI.

Chitosan-Based (Nano)Materials for Novel Biomedical Applications

Molecules, 2019

Chitosan-based nanomaterials have attracted significant attention in the biomedical field because of their unique biodegradable, biocompatible, non-toxic, and antimicrobial nature. Multiple perspectives of the proposed antibacterial effect and mode of action of chitosan-based nanomaterials are reviewed. Chitosan is presented as an ideal biomaterial for antimicrobial wound dressings that can either be fabricated alone in its native form or upgraded and incorporated with antibiotics, metallic antimicrobial particles, natural compounds and extracts in order to increase the antimicrobial effect. Since chitosan and its derivatives can enhance drug permeability across the blood-brain barrier, they can be also used as effective brain drug delivery carriers. Some of the recent chitosan formulations for brain uptake of various drugs are presented. The use of chitosan and its derivatives in other biomedical applications is also briefly discussed.

Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer

Medicinal Research Reviews, 2018

Nanotechnology as an emerging field has established inevitable impacts on nano-biomedicine and treatment of formidable diseases, inflammations, and malignancies. In this regard, substantial advances in the design of systems for delivery of therapeutic agents have emerged magnificent and innovative pathways in biomedical applications. Chitosan (CS) is derived via deacetylation of chitin as the second most abundant polysaccharide. Owing to the unique properties of CS (e.g., biocompatibility, biodegradability, bioactivity, mucoadhesion, cationic nature and functional groups), it is an excellent candidate for diverse biomedical and pharmaceutical applications such as drug/gene delivery, transplantation of encapsulated cells, tissue engineering, wound healing, antimicrobial purposes, etc. In this review, we will document, discuss, and provide some key insights toward design and application of miscellaneous nanoplatforms based on CS. The CS-based nanosystems (NSs) can be employed as advanced drug delivery systems (DDSs) in large part due to their remarkable physicochemical and biological characteristics. The abundant functional groups of CS allow the facile functionalization in order to engineer multifunctional NSs, which can simultaneously incorporate therapeutic agents, molecular targeting, and diagnostic/imaging capabilities in particular against malignancies. These multimodal NSs can be literally translated into clinical applications such as targeted diagnosis and therapy of cancer because they offer minimal systemic toxicity and maximal cytotoxicity against cancer cells and tumors. The recent developments in the CS-based NSs functionalized with targeting and imaging agents prove CS as a versatile polymer in targeted imaging and therapy.

Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers

Pharmaceutics

In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines,...

Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles

Carbohydrate Polymers, 2010

We have prepared chitosan (CH)-gadolinium (Gd) diethylenetriaminepentaacetic acid (DTPA) conjugates that have potential as contrast agents for magnetic resonance imaging. Conjugates were synthesized starting with low molecular weight chitosan (25 kDa and 96% degree of deacetylation (noted DDA)) by covalent linkage of DTPA to chitosan amine groups confirmed by Fourier transform infrared spectroscopy (FTIR). Different DTPA/amine ratios were used to obtain different degrees of DTPA conjugation (10-20%), determined by nuclear magnetic resonance ( 1 H NMR) spectroscopy, a colorimetric assay, and isothermal titration calorimetry (ITC). After preparation of chitosan-DTPA complexes with Gd, polyelectrolyte complexes were assembled with plasmid DNA pEGFPLuc (6367 bp) and investigated using scanning electron microscopy and scanning transmission electron microscopy. Particles were spherical with diameters in the range of 30-150 nm. The presence of gadolinium in the nanoparticles was confirmed by energy dispersive X-ray spectroscopy. Gd was located preferentially in a 2-5 nm wide area surrounding the nanoparticles.

The Chemistry of Chitin and Chitosan Justifying their Nanomedical Utilities

Biochemistry & Pharmacology: Open Access, 2018

Chitin and chitosan are among the most commonly used natural polymers in nanomedicine because they display very attractive characteristics for drug delivery and have proven very effective when formulated in nanoparticle forms. Properties such as the cationic character and the solubility of chitosan in aqueous medium have been reported as determinants of the success of this polysaccharide. However, its most attractive property relies on its ability to adhere to mucosal surfaces, leading to prolonged residence time at drug absorption sites and enabling higher drug permeation. This is because chitin and chitosan are able to interact with anionic agents and form water-soluble barriers which participate in drug release. The wide nanomedical applications of chitin and chitosan are due not only to their excellent biocompatibility, biodegradability, non-toxicity, ordourless nature and economic efficiency but also due to their distinct chemical structure with high percentage of primary amino groups and acetamido groups in chitosan and chitin respectively, for easy binding to bio-molecules such as DNAs and proteins. This review highlights the properties and modifications of chitin and chitosan which are responsible for the wide range of applications of these materials, particularly in nanomedicine for drug delivery and gene therapy, thereby encouraging more research into the exploration of their properties and modifications for improved applications.

Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review

International Journal of Biological Macromolecules, 2024

Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, nonimmunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.