Pulse-Modulated Plasma Etching of Copper Thin Films via CH3COOH/Ar (original) (raw)
Journal of Nanoscience and Nanotechnology, 2021
Abstract
Pulse-modulated plasma etching of copper masked using SIO2 films was conducted via a CH3COOH/Ar. The etch characteristics were examined under pulse-modulated plasma. As the duty ratio of pulse decreased and the frequency of pulse increased, the etch selectivity and etch profile were improved. X-ray photoelectron spectroscopy and indicated that more copper oxides (Cu2O and CuO) and Cu(CH3COO)2 were formed using pulse-modulated plasma than those formed using continuous-wave (CW) plasma. As the concentration of CH3COOH gas in pulse-modulated plasma increased, the formation of these copper compounds increased, which improved the etch profiles. Optical emission spectroscopy confirmed that the active ingredients of the plasma increased with decreasing pulse duty ratio and increasing frequency. Therefore, the optimized pulsed plasma etching of copper via a CH3COOH/Ar gas provides better etch profile than that by CW plasma etching.
Chee Won Chung hasn't uploaded this paper.
Let Chee Won know you want this paper to be uploaded.
Ask for this paper to be uploaded.