Investigation of Shape Transformations of Vesicles, Induced by Their Adhesion to Flat Substrates Characterized by Different Adhesion Strength (original) (raw)
Abstract
The adhesion of lipid vesicles to a rigid flat surface is investigated. We examine the influence of the membrane spontaneous curvature, adhesion strength, and the reduced volume on the stability and shape transformations of adhered vesicles. The minimal strength of the adhesion necessary to stabilize the shapes of adhered vesicles belonging to different shape classes is determined. It is shown that the budding of an adhered vesicle may be induced by the change of the adhesion strength. The importance of the free vesicle shape for its susceptibility to adhesion is discussed.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (25)
- Ramachandran, A.; Anderson, T.H.; Leal, L.G.; Israelachvili, J.N. Adhesive interactions between vesicles in the strong adhesion limit. Langmuir 2011, 27, 59-73. [CrossRef] [PubMed]
- Mareš, T.; Daniel, M.; Iglič, A.; Kralj-Iglič, V.; Fošnarič, M. Determination of the strength of adhesion between lipid vesicles. Sci. World J. 2012, 2012, 146804. [CrossRef]
- Fenz, S.F.; Bihr, T.; Schmidt, D.; Merkel, R.; Seifert, U.; Sengupta, K.; Smith, A.S. Membrane fluctuations mediate lateral interaction between cadherin bonds. Nat. Phys. 2017, 13, 906-913. [CrossRef]
- Evans, E. Analysis of adhesion of large vesicles to surfaces. Biophys. J. 1980, 31, 425-431. [CrossRef]
- Seifert, U.; Lipowsky, R. Adhesion of vesicles. Phys. Rev. A 1990, 42, 4768-4771. [CrossRef] [PubMed]
- Seifert, U. Adhesion of vesicles in two dimensions. Phys. Rev. A 1991, 43, 6803-6814. [CrossRef] [PubMed]
- Raval, J.; Góźdź, W.T. Shape transformations of vesicles induced by their adhesion to flat surfaces. ACS Omega 2020, 5, 16099-16105.
- Bibissidis, N.; Betlem, K.; Cordoyiannis, G.; von Bonhorst, F.P.; Goole, J.; Raval, J.; Daniel, M.; Góźdź, W.; Iglič, A.; Losada-Pérez, P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J. Mol. Liq. 2020, 320, 114492.
- Bell, G.; Dembo, M.; Bongrand, P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 1984, 45, 1051-1064. [CrossRef]
- Brochard-Wyart, F.; de Gennes, P.G. Adhesion induced by mobile binders: Dynamics. Proc. Nat. Acad. Sci. USA 2002, 99, 7854-7859. [CrossRef] [PubMed]
- Steinkühler, J.; Agudo-Canalejo, J.; Lipowsky, R.; Dimova, R. Modulating vesicle adhesion by electric fields. Biophys. J. 2016, 111, 1454-1464. [CrossRef]
- Swain, P.S.; Andelman, D. The influence of substrate structure on membrane adhesion. Langmuir 1999, 15, 8902-8914. [CrossRef]
- Weikl, T.R.; Asfaw, M.; Krobath, H.; Ró życki, B.; Lipowsky, R. Adhesion of membranes via receptor-ligand complexes: Domain formation, binding cooperativity, and active processes. Soft Matter 2009, 5, 3213-3224. [CrossRef]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforschung C 1973, 28, 693-703. [CrossRef] [PubMed]
- Evans, E. Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 1974, 14, 923-931. [CrossRef]
- Canham, P.B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 1970, 26, 61-81. [CrossRef]
- Döbereiner, H.G.; Selchow, O.; Lipowsky, R. Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. 1999, 28, 174-178. [CrossRef]
- Góźdź, W.T. Spontaneous curvature induced shape transformations of tubular polymersomes. Langmuir 2004, 20, 7385-7391.
- Miao, L.; Fourcade, B.; Rao, M.; Wortis, M.; Zia, R.K.P. Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. Phys. Rev. A 1991, 43, 6843-6856. [CrossRef]
- Góźdź, W. Influence of spontaneous curvature and microtubules on the conformations of lipid vesicles. J. Phys. Chem. B 2005, 109, 21145-21149. [CrossRef]
- Noguchi, H. Detachment of a fluid membrane from a substrate and vesiculation. Soft Matter 2019, 15, 8741-8748. [CrossRef]
- Wang, C.; Chowdhury, S.; Driscoll, M.; Parent, C.A.; Gupta, S.K.; Losert, W. The interplay of cell-cell and cell-substrate adhesion in collective cell migration. J. R. Soc. Interface 2014, 11, 20140684. [CrossRef]
- Lv, J.Q.; Chen, P.C.; Góźdź, W.T.; Li, B. Mechanical adaptions of collective cells nearby free tissue boundaries. J. Biomech. 2020, 104, 109763. [CrossRef] [PubMed]
- Raval, J.; Gongadze, E.; Benčina, M.; Junkar, I.; Rawat, N.; Mesarec, L.; Kralj-Iglič, V.; Góźdź, W.; Iglič, A. Mechanical and electrical interaction of biological membranes with nanoparticles and nanostructured surfaces. Membranes 2021, 11, 533. [CrossRef] [PubMed]
- Benčina, M.; Rawat, N.; Lakota, K.; Sodin-Šemrl, S.; Iglič, A.; Junkar, I. Bio-performance of pydrothermally and plasma-treated titanium: The new generation of vascular stents. Int. J. Mol. Sci. 2021, 22, 11858. [CrossRef] [PubMed]