Stochastic scattering theory for excitation-induced dephasing: Comparison to the Anderson–Kubo lineshape (original) (raw)
2020, The Journal of Chemical Physics
We develop a stochastic theory that treats time-dependent exciton-exciton s-wave scattering and that accounts for dynamic Coulomb screening, which we describe within a mean-field limit. With this theory, we model excitation-induced dephasing effects on timeresolved two-dimensional coherent optical lineshapes and we identify a number of features that can be attributed to the many-body dynamics occurring in the background of the exciton, including dynamic line narrowing, mixing of real and imaginary spectral components, and multi-quantum states. We test the model by means of multidimensional coherent spectroscopy on a two-dimensional metal-halide semiconductor that hosts tightly bound excitons and biexcitons that feature strong polaronic character. We find that the exciton nonlinear coherent lineshape reflects many-body correlations that give rise to excitation-induced dephasing. Furthermore, we observe that the exciton lineshape evolves with population time over time windows in which the population itself is static, in a manner that reveals the evolution of the multi-exciton many-body couplings. Specifically, the dephasing dynamics slow down with time, at a rate that is governed by the strength of exciton many-body interactions and on the dynamic Coulomb screening potential. The real part of the coherent optical lineshape displays strong dispersive character at zero time, which transforms to an absorptive lineshape on the dissipation timescale of excitation-induced dephasing effects, while the imaginary part displays converse behavior. Our microscopic theoretical approach is sufficiently flexible to allow for a wide exploration of how system-bath dynamics contribute to linear and non-linear time-resolved spectral behavior.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.