Cytokines: the yin and yang of vitiligo pathogenesis (original) (raw)
Related papers
New Insights into the Pathogenesis of Vitiligo: Imbalance of Epidermal Cytokines at Sites of Lesions
PIGMENT CELL RESEARCH, 2002
Vitiligo is a skin disease that is caused by selective destruction of melanocytes and is characterized by white spots. Melanocytes and keratinocytes seem to exhibit a functional close relationship, mediated at least in part by keratinocyte-derived cytokines, which seem important for survival and activity of melanocytic cells. We wanted to investigate the hypothesis that in vitiligo the expression of epidermal cytokines may be modified compared with normal skin. In 15 patients with active, non-segmental vitiligo, biopsies were obtained from lesional, perilesional and non-lesional skin; normal skin from five healthy donors was also tested. Tissue sections were tested using immunohistochemistry for the expression of keratinocyte-derived cytokines with stimulating activity, such as granulocyte-monocyte colony stimulating factor (GM-CSF), basic fibroblastic growth factor (bFGF), and stem cell factor (SCF) or with inhibiting activity, such as interleukin 6 (IL-6) and tumour necrosis factor a (TNF-a) on melanocytes.
Predominant role of innate pro-inflammatory cytokines in vitiligo disease
Archives of Dermatological Research, 2019
Vitiligo is a skin disorder with melanocyte destruction and an autoimmune basis. Given the importance of cytokines in autoimmunity, we aimed to find the cytokine profile of innate and adaptive immunity in vitiligo patients, and correlate them with clinical parameters. The serum levels of innate immunity [interleukin(IL)-1α, IL-1β, IL-6, IL-8, IL-12, IL-15 and tumor necrosis factor (TNF)-α] and T helper(Th)1 [IL-2, interferon (IFN)-γ, TNF-β], Th2 (IL-4, IL-5, IL-10, IL-13) and Th17 (IL-17, IL-23) cytokines in 44 vitiligo patients were measured by multiplex cytokine assay and compared with 44 healthy subjects. All innate immunity (p < 0.04), Th1 (p < 0.01), Th2 (p < 0.05) and Th17 (p < 0.001) cytokines were higher in patients than controls. Total summation levels of innate immunity and adaptive immunity cytokines showed a remarkable up-regulation in the patients (p < 0.0001). The ratio of innate immunity to Th1 (p = 0.03), Th2 (p = 0.01) and Th17 (p = 0.03) cytokines was significantly higher in patients vs. controls. We found significant higher ratio of Th1 to Th2 cytokines and TNF-β elevated levels in patients with a family history of autoimmunity (p < 0.05). IL-4 and IL-13 (p < 0.04) levels were lower in patients with amelanotic hair. Increased IL-10 level was observed in patients with stable disease (p = 0.02). In conclusion, the profile of cytokines in patients showed a dominant role of innate immunity pro-inflammatory cytokines in vitiligo, which suggests the potential of targeting these cytokines for vitiligo treatment. While a higher ratio of Th1/Th2 cytokines was observed in the patients, association of decreased Th2 cytokines with disease complications suggests a protective role for Th2 pathway.
Vitiligo: interplay between oxidative stress and immune system
Experimental Dermatology, 2013
Vitiligo is a multifactorial polygenic disorder with a complex pathogenesis, linked with both genetic and non-genetic factors. The precise modus operandi for vitiligo pathogenesis has remained elusive. Theories regarding loss of melanocytes are based on autoimmune, cytotoxic, oxidant-antioxidant and neural mechanisms. Reactive oxygen species (ROS) in excess have been documented in active vitiligo skin. Numerous proteins in addition to tyrosinase are affected. It is possible that oxidative stress is one among the main principal causes of vitiligo. However, there also exists ample evidence for altered immunological processes in vitiligo, particularly in chronic and progressive conditions. Both innate and adaptive arms of the immune system appear to be involved as a primary event or as a secondary promotive consequence. There is speculation on the interplay, if any, between ROS and the immune system in the pathogenesis of vitiligo. The article focuses on the scientific evidences linking oxidative stress and immune system to vitiligo pathogenesis giving credence to a convergent terminal pathway of oxidative stressautoimmunity-mediated melanocyte loss.
Role of oxidative stress and autoimmunity in onset and progression of vitiligo
Experimental Dermatology, 2014
Vitiligo is an acquired depigmentation disorder characterized by the loss of functional melanocytes from the epidermis. Two major theories of vitiligo pathogenesis include autoimmunity and oxidative stress-mediated toxicity in melanocytes. The present study aimed to evaluate both the hypotheses in vitiligo patients and to investigate their role in the disease onset and progression. Antimelanocyte antibody levels and lipid peroxidation (LPO) levels were evaluated in 427 patients and 440 controls; antithyroid peroxidase (TPO) antibody levels were estimated in 102 patients and 72 controls. Patients showed a significant increase in LPO and antimelanocyte antibody levels
Human Immunology, 2012
The expression pattern of several genes associated with different processes in melanocytes, including melanogenesis, is changed in vitiligo patients. We evaluated possible changes in the expression of interleukin (IL)-10 family cytokines (IL26, IL-28A, IL28B, IL29), their receptor subunits (IL20RB, IL22RA2, IL28RA), and genes potentially related to functioning of melanocytes (MDM1, IFNA1, IFNB1, IFNG, and ICAM1) in the case of vitiligo. We observed mRNA expression in vitiligo patients' and controls' skin and peripheral blood mononuclear cells using quantitative real-time polymerase chain reaction. The mRNA expression pattern of IL20RB,
Histology and histopathology, 2009
Vitiligo is a skin disorder characterized by loss of functional melanocytes. Keratinocytes contribute to melanocyte homeostasis, and keratinocyte alteration may play a role in melanocyte dysfunction in vitiligo. In particular, the release of melanogenic mediators and the level of functioning keratinocytes may affect melanocyte dysfunction in vitiligo epidermis. Keratinocyte-derived mediators involved in pigmentation, analysed by in situ hybridization, and epidermal apoptosis, detected by TUNEL assay and electron microscopy, were evaluated in lesional and perilesional skin biopsies from 15 patients with active vitiligo and in 5 control subjects. Among the melanogenic mediators, stem cell factor (SCF) and endothelin-1 (ET-1) mRNA were significantly reduced in lesional as compared to perilesional epidermis, whereas no difference was observed in mRNA of basic fibroblastic growth factor (bFGF) and granulocyte-monocyte colony stimulating factor (GM-CSF). The expression of mRNA for tumor n...
Cytokines and Oxidative Stress Profiles in Iraqi Patients with Vitiligo
Annals of Tropical Medicine and Public Health, 2019
Vitiligo is a developed depigmentation disorder consisting of two forms which are segmental vitiligo (SV), affect one side of the body in 50% of individuals and non-segmental vitiligo (NSV) which is more common and affects both side of the body. A studydocumented that vitiligo susceptibility genes that are linked to immune regulation and immune targeting of melanocytes which are Tumor necrosis factor alpha (TNF-α), Interferon gamma (IFN-γ) and interleukin 10 (IL-10), are responsible for the pathogenesis of vitiligo. This study was designed to shed light on cytokinesand oxidative stress which may play a critical role in the pigmentary process of NSV. Fifty NSV patients were collected from dermatology department Baghdad teaching hospital, Baghdad, Iraq. And fifty healthy volunteers' individuals enrolled in this study during the period from November 2018 to May 2019. Some parameters including the concentration of immunological guideline TNF-α, IFN-γ and IL-10, and the level of oxidative stress H2O2 in malondialdehyde (MDA) form and superoxide dismutase SOD were evaluated in sera using ELISA technique. Serum level of TNF-α and IFN-γ were significantly higher in patient as compared to control. While serum IL-10 was significantly lower in vitiligo when compared with healthy.The assayed serum level of oxidative stress MDA and superoxide dismutase was found to be increased in vitiligo. There was an imbalance between pro and anti-inflammatory cytokines. Elevated levels of MDA and SOD suggested that an oxidative stress and antioxidants could play an adjuvant role in the management of vitiligo in addition to specific therapies.
A review and a new hypothesis for non‐immunological pathogenetic mechanisms in vitiligo
Pigment cell research, 2006
Vitiligo is an acquired depigmenting disorder characterized by the loss of functioning epidermal melanocytes because of multifactorial and overlapping pathogenetic mechanisms. Besides the immunological approach, the study of the metabolic deregulations leading to toxic damage of the melanocytes appears to be more and more relevant. It was only last year that the first in vitro evidence supporting the link and the temporal sequence between the immune response and the cellular oxidative stress was provided, suggesting that the intrinsic damage of the melanocytes is primitive. What can be the guide line of the multiple altered metabolisms? A compromised membrane could render the cell sensitive to the external and internal agents differently, usually ineffective on the cell activity and survival. The primitive altered arrangement of the lipids may affect the transmembrane housing of proteins with enzymatic or receptorial activities, also conferring on them antigenic properties.
Novel immunological and genetic factors associated with vitiligo: A review
Experimental and Therapeutic Medicine, 2021
Vitiligo is a skin disorder characterized by depigmentation of the skin due to a lack of melanin. This condition affects men and woman of all ages and its incidence is not restricted by ethnicity or region. Vitiligo is a multifactorial disease, in which melanocytes, which serve important functions in skin pigmentation and immune processes, are impaired. There is sufficient evidence that immunological and genetic factors are primarily responsible for the destruction and dysfunction of melanocytes. Therefore, genetic DNA sequence variants that participate in skin homeostasis, pigmentation and immune response regulation, as well as altered expression patterns, may contribute to the risk of developing vitiligo. The current review presented an overview of the mechanism of pigmentation and of currently known factors involved in depigmentation, as well as the classification, epidemiology, associated comorbidities, risk factors, immunopathogenesis and several genetic and molecular changes associated with vitiligo. Contents 1. Overview 2. Immunopathogenesis of vitiligo 3. Genetic factors associated with vitiligo 4. Conclusions