Editorial: Host immune evasion by Mycobacterium tuberculosis: Current updates (original) (raw)
Related papers
Scientific reports, 2016
Macrophage-mediated innate immune responses play crucial roles in host defense against pathogens. Recent years have seen an explosion of host proteins that act as restriction factors blocking viral replication in infected cells. However, the essential factors restricting Mycobacterium tuberculosis (Mtb) and their regulatory roles during mycobacterial infection remain largely unknown. We previously reported that Mtb tyrosine phosphatase PtpA, a secreted effector protein required for intracellular survival of Mtb, inhibits innate immunity by co-opting the host ubiquitin system. Here, we identified a new PtpA-interacting host protein TRIM27, which is reported to possess a conserved RING domain and usually acts as an E3 ubiquitin ligase that interferes with various cellular processes. We further demonstrated that TRIM27 restricts survival of mycobacteria in macrophages by promoting innate immune responses and cell apoptosis. Interestingly, Mtb PtpA could antagonize TRIM27-promoted JNK/p...
Mycobacterium tuberculosis Rv2224c modulates innate immune responses
Proceedings of The National Academy of Sciences, 2008
Tuberculosis remains a major global health problem that kills up to 2 million people annually. Central to the success of Mycobacterium tuberculosis (Mtb) as a pathogen is its ability to evade host immunity and to establish a chronic infection. Although its primary intracellular niche is within macrophages, the underlying molecular mechanisms are poorly understood. Here we show that Rv2224c, a cell envelope-associated predicted protease, is critical for Mtb virulence. Disruption of Rv2224c led to prolonged survival of infected mice and highly reduced lung pathology. Absence of Rv2224c enhanced host innate immune responses, compromised the intracellular survival of Mtb in macrophages, and increased its susceptibility to lysozyme. We provide insights into the molecular basis for Rv2224c function by showing that Rv2224c activity promotes processing and extracellular release of the Mtb protein, GroEL2. Inhibition of Rv2224c and its targets offers opportunities for therapeutic interventions and immune-modulatory strategies.
Pathogens, 2021
The Mycobacterium tuberculosis (M. tb) genome encodes a large number of hypothetical proteins, which need to investigate their role in physiology, virulence, pathogenesis, and host interaction. To explore the role of hypothetical protein Rv0580c, we constructed the recombinant Mycobacterium smegmatis (M. smegmatis) strain, which expressed the Rv0580c protein heterologously. We observed that Rv0580c expressing M. smegmatis strain (Ms_Rv0580c) altered the colony morphology and increased the cell wall permeability, leading to this recombinant strain becoming susceptible to acidic stress, oxidative stress, cell wall-perturbing stress, and multiple antibiotics. The intracellular survival of Ms_Rv0580c was reduced in THP-1 macrophages. Ms_Rv0580c up-regulated the IFN-γ expression via NF-κB and JNK signaling, and down-regulated IL-10 expression via NF-κB signaling in THP-1 macrophages as compared to control. Moreover, Ms_Rv0580c up-regulated the expression of HIF-1α and ER stress marker ge...
International Journal of Molecular Sciences
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the...
Molecular Microbiology, 2010
Proteins targeted for degradation by the Mycobacterium proteasome are post-translationally tagged with prokaryotic ubiquitin-like protein (Pup), an intrinsically disordered protein of 64 residues. In a process termed "pupylation", Pup is synthesized with a terminal glutamine, which is deamidated to glutamate by Dop (deamidase of Pup) prior to attachment to substrate lysines by PafA (proteasome accessory factor A). Importantly, PafA was previously shown to be essential to cause lethal infections by Mycobacterium tuberculosis (Mtb) in mice. In this study we show that Dop, like PafA, is required for the full virulence of Mtb. Additionally, we show that Dop is involved not only in the deamidation of Pup, but is also needed to maintain wild type steady state levels of pupylated proteins in Mtb. Finally, using structural models and site-directed mutagenesis our data suggest Dop and PafA are members of the glutamine synthetase fold family of proteins.
PLoS ONE, 2012
The unique PE/PPE multigene family of proteins occupies almost 10% of the coding sequence of Mycobacterium tuberculosis (M.tb), the causative agent of human tuberculosis. Although some members of this family have been shown to be involved in pathways essential to M.tb pathogenesis, their precise physiological functions remain largely undefined. Here, we investigate the roles of the conserved members of the 'PE only' subfamily Rv0285 (PE5) and Rv1386 (PE15) in mediating host-pathogen interactions. Recombinant Mycobacterium smegmatis strains expressing PE5 and PE15 showed enhanced survival vs controls in J774.1 and THP-1 macrophages-this increase in viable counts was correlated with a reduction in transcript levels of inducible nitric oxide synthase. An up-regulation of anti-and down-regulation of pro-inflammatory cytokine levels was also observed in infected macrophages implying an immuno-modulatory function for these proteins. Induction of IL-10 production upon infection of THP-1 macrophages was associated with increased phosphorylation of the MAP Kinases p38 and ERK1/2, which was abolished in the presence of the pharmacological inhibitors SB203580 and PD98059. The PE5-PPE4 and PE15-PPE20 gene pairs were observed to be co-operonic in M.tb, hinting at an additional level of complexity in the functioning of these proteins. We conclude that M.tb exploits the PE proteins to evade the host immune response by altering the Th1 and Th2 type balance thereby favouring in vivo bacillary survival.
Protein Science, 2005
Virulence and immunity are still poorly understood in Mycobacterium tuberculosis. The H37Rv M. tuberculosis laboratory strain genome has been completely sequenced, and this along with proteomic technology represent powerful tools contributing toward studying the biology of target cell interaction with a facultative bacillus and designing new strategies for controlling tuberculosis. Rv2004c is a putative M. tuberculosis protein that could have specific mycobacterial functions. This study has revealed that the encoding gene is present in all mycobacterium species belonging to the M. tuberculosis complex. Rv2004c gene transcription was observed in all of this complex's strains except Mycobacterium bovis and Mycobacterium microti. Rv2004c protein expression was confirmed by using antibodies able to recognize a 54-kDa molecule by immunoblotting, and its location was detected on the M. tuberculosis surface by transmission electron microscopy, suggesting that it is a mycobacterial surface protein. Binding assays led to recognizing high activity binding peptides (HABP); five HABPs specifically bound to U937 cells, and six specifically bound to A549 cells. HABP circular dichroism suggested that they had an α-helical structure. HABP–target cell interaction was determined to be specific and saturable; some of them also displayed greater affinity for A549 cells than U937 cells. The critical amino acids directly involved in their interaction with U937 cells were also determined. Two probable receptor molecules were found on U937 cells and five on A549 for the two HABPs analyzed. These observations have important biological significance for studying bacillus–target cell interactions and implications for developing strategies for controlling this disease.
Virulence, 2015
Alveolar macrophages are the main line of innate immune response against M. tuberculosis (Mtb) infection. However, these cells serve as the major intracellular niche for Mtb enhancing its survival, replication and, later on, cell-to-cell spread. Mtb-associated cytotoxicity of macrophages has been well documented, but limited information exists about mechanisms by which the pathogen induces cell necrosis. To identify virulence factors involved in the induction of necrosis, we screened 5,000 transposon mutants of Mtb for clones that failed to promote the host cell necrosis in a similar manner as the wild-type bacterium. Five Mtb mutants were identified as potential candidates inducing significantly lower levels of THP-1 cell damage in contrast to the H37Rv wild-type infection. Reduced levels of the cell damage by necrosis deficient mutants (NDMs) were also associated with delayed damage of mitochondrial membrane permeability when compared with the wild-type infection over time. Two knockout mutants of the Rv3873 gene, encoding a cell wall PPE68 protein of RD1 region, were identified out of 5 NDMs. Further investigation lead to the observation that PPE68 protein interacts and exports several unknown or known surface/secreted proteins, among them Rv2626c is associated with the host cell necrosis. When the Rv2626c gene is deleted from the genome of Mtb, the bacterium displays significantly less necrosis in THP-1 cells and, conversely, the overexpression of Rv2626c promotes the host cell necrosis at early time points of infections in contrast to the wild-type strain.
Scientific reports, 2017
The success of Mycobacterium tuberculosis (M. tuberculosis) as a pathogen is largely contributes to its ability to manipulate the host immune responses. The genome of M. tuberculosis encodes multiple immune-modulatory proteins, including several members of the multi-genic PE_PPE family. Despite of intense research, the roles of PE_PGRS proteins in mycobacterial pathogenesis remain elusive. The function of M. tuberculosis PE_PGRS41, characterized by an extended and unique C-terminal domain, was studied. Expression of PE_PGRS41 in Mycobacterium smegmatis, a non-pathogenic species intrinsically deficient of PE_PGRS, severely impaired the resistance of the recombinant to multiple stresses via altering the cell wall integrity. Macrophages infected by M. smegmatis harboring PE_PGRS41 decreased the production of TNF-α, IL-1β and IL-6. In addition, PE_PGRS41 boosted the survival of M. smegmatis within macrophage accompanied with enhanced cytotoxic cell death through inhibiting the cell apop...