Whole-exome and whole-transcriptome sequencing of canine mammary gland tumors (original) (raw)

Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer

Cancer research, 2014

Spontaneously occurring canine mammary cancer represents an excellent model of human breast cancer, but is greatly understudied. To better use this valuable resource, we performed whole-genome sequencing, whole-exome sequencing, RNA-seq, and/or high-density arrays on twelve canine mammary cancer cases, including seven simple carcinomas and four complex carcinomas. Canine simple carcinomas, which histologically match human breast carcinomas, harbor extensive genomic aberrations, many of which faithfully recapitulate key features of human breast cancer. Canine complex carcinomas, which are characterized by proliferation of both luminal and myoepithelial cells and are rare in human breast cancer, seem to lack genomic abnormalities. Instead, these tumors have about 35 chromatin-modification genes downregulated and are abnormally enriched with active histone modification H4-acetylation, whereas aberrantly depleted with repressive histone modification H3K9me3. Our findings indicate the li...

Molecular Biological Aspects on Canine and Human Mammary Tumors

Veterinary Pathology, 2010

The high incidence of mammary tumor disease reported in certain canine breeds suggests a significant genetic component, as has already been described in human familial breast cancer—in BRCA1- and BRCA2-associated breast cancer in particular. The identification of genetic risk factors is critical to improvements in the prevention, diagnosis, and treatment of these tumors. In recent years, there has been significant progress in developing the tools and reagents necessary to analyze the canine genome. This work has culminated in a high-quality draft genome sequence, as well as a single-nucleotide polymorphism map and single-nucleotide polymorphism arrays for genomewide association analysis. These tools provide an unprecedented opportunity to characterize the genetic influences in canine diseases such as cancer, eventually allowing for exploration of more effective therapies. Given the high homology between the canine genome sequence and its human counterpart—as well as the many similar...

Cross-species oncogenic signatures of breast cancer in canine mammary tumors

Nature Communications

Genomic and precision medicine research has afforded notable advances in human cancer treatment, yet applicability to other species remains uncertain. Through whole-exome and transcriptome analyses of 191 spontaneous canine mammary tumors (CMTs) that exhibit the archetypal features of human breast cancers, we found a striking resemblance of genomic characteristics including frequent PIK3CA mutations (43.1%), aberrations of the PI3K-Akt pathway (61.7%), and key genes involved in cancer initiation and progression. We also identified three gene expression-based CMT subtypes, one of which segregated with basal-like human breast cancer subtypes with activated epithelial-to-mesenchymal transition, low claudin expression, and unfavorable disease prognosis. A relative lack of ERBB2 amplification and Her2-enrichment subtype in CMT denoted species-specific molecular mechanisms. Taken together, our results elucidate cross-species oncogenic signatures for a better understanding of universal and...

Genome-Wide Analysis Identifies Germ-Line Risk Factors Associated with Canine Mammary Tumours

PLoS genetics, 2016

Canine mammary tumours (CMT) are the most common neoplasia in unspayed female dogs. CMTs are suitable naturally occurring models for human breast cancer and share many characteristics, indicating that the genetic causes could also be shared. We have performed a genome-wide association study (GWAS) in English Springer Spaniel dogs and identified a genome-wide significant locus on chromosome 11 (praw = 5.6x10-7, pperm = 0.019). The most associated haplotype spans a 446 kb region overlapping the CDK5RAP2 gene. The CDK5RAP2 protein has a function in cell cycle regulation and could potentially have an impact on response to chemotherapy treatment. Two additional loci, both on chromosome 27, were nominally associated (praw = 1.97x10-5 and praw = 8.30x10-6). The three loci explain 28.1±10.0% of the phenotypic variation seen in the cohort, whereas the top ten associated regions account for 38.2±10.8% of the risk. Furthermore, the ten GWAS loci and regions with reduced genetic variability are...

Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs

npj Precision Oncology

Spontaneous tumors in canines share significant genetic and histological similarities with human tumors, positioning them as valuable models to guide drug development. However, current translational studies have limited real world evidence as cancer outcomes are dispersed across veterinary clinics and genomic tests are rarely performed on dogs. In this study, we aim to expand the value of canine models by systematically characterizing genetic mutations in tumors and their response to targeted treatments. In total, we collect and analyze survival outcomes for 2119 tumor-bearing dogs and the prognostic effect of genomic alterations in a subset of 1108 dogs. Our analysis identifies prognostic concordance between canines and humans in several key oncogenes, including TP53 and PIK3CA. We also find that several targeted treatments designed for humans are associated with a positive prognosis when used to treat canine tumors with specific genomic alterations, underscoring the value of canin...

cDNA microarray profiles of canine mammary tumour cell lines reveal deregulated pathways pertaining to their phenotype

Animal Genetics, 2008

Mammary cancer is the most common type of cancer in female dogs with a lifetime risk of over 24% when dogs are not spayed. The elucidation of the complete canine genome opens new areas for development of cancer therapies. These should be tested first by in vitro models such as cell lines. However, to date, no canine mammary cell lines have been characterized by expression profiling. In this study, canine mammary tumour cell lines with histologically distinct primary tumours of origin were characterized using a newly developed canine cDNA microarray. Comparisons of gene expression profiles showed enrichment for distinct biological pathways and were related to biological properties of the cell lines such as growth rate and in vitro tumourigenicity. Additionally, gene expression profiles of cell lines also showed correspondence to their tumour of origin. Major differences were found in Wnt, cell cycle, cytokine/Rho-GTPase, alternative complement and integrin signalling pathways. Because these pathways show an overlap at the molecular level with those found in human breast cancer, the expression profiling of spontaneous canine mammary cancer may also function as a biological sieve to identify conserved gene expression or pathway profiles of evolutionary significance that are involved in tumourigenesis. These results are the basis for further characterization of canine mammary carcinomas and development of new therapies directed towards specific pathways. In addition these cell lines can be used to further investigate identified deregulated pathways and characterize until now unannotated genes.

Comparative expression pathway analysis of human and canine mammary tumors

BMC Genomics, 2009

Background: Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved.

Modeling molecular development of breast cancer in canine mammary tumors

Genome Research, 2020

Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for improving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs) coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus providing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples per patient is necessary to effectively capture the...

Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis

PLOS ONE

Spontaneously occurring canine mammary tumours (CMTs) are the most common neoplasms of unspayed female dogs leading to thrice higher mortality rates than human breast cancer. These are also attractive models for human breast cancer studies owing to clinical and molecular similarities. Thus, they are important candidates for biomarker studies and understanding cancer pathobiology. The study was designed to explore underlying molecular networks and pathways in CMTs for deciphering new prognostic factors and therapeutic targets. To gain an insight into various pathways and networks associated with the development and pathogenesis of CMTs, comparative cDNA microarray expression profiling was performed using CMT tissues and healthy mammary gland tissues. Upon analysis, 1700 and 1287 differentially expressed genes (DEGs, P � 0.05) were identified in malignant and benign tissues, respectively. DEGs identified from microarray analysis were further annotated using the Ingenuity Systems Pathway Analysis (IPA) tool for detection of deregulated canonical pathways, upstream regulators, and networks associated with malignant, as well as, benign disease. Top scoring key networks in benign and malignant mammary tumours were having central nodes of VEGF and BUB1B, respectively. Cyclins & cell cycle regulation and TREM1 signalling were amongst the top activated canonical pathways in CMTs. Other cancer related significant pathways like apoptosis signalling, dendritic cell maturation, DNA recombination and repair, Wnt/β-catenin signalling, etc. were also found to be altered. Furthermore, seven proteins (ANXA2, APOCII, CDK6, GATC, GDI2, GNAQ and MYH9) highly up-regulated in malignant tissues were identified by two-dimensional gel electrophoresis

Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds

Nature Communications, 2021

Spontaneous canine cancers are valuable but relatively understudied and underutilized models. To enhance their usage, we reanalyze whole exome and genome sequencing data published for 684 cases of >7 common tumor types and >35 breeds, with rigorous quality control and breed validation. Our results indicate that canine tumor alteration landscape is tumor type-dependent, but likely breed-independent. Each tumor type harbors major pathway alterations also found in its human counterpart (e.g., PI3K in mammary tumor and p53 in osteosarcoma). Mammary tumor and glioma have lower tumor mutational burden (TMB) (median < 0.5 mutations per Mb), whereas oral melanoma, osteosarcoma and hemangiosarcoma have higher TMB (median ≥ 1 mutations per Mb). Across tumor types and breeds, TMB is associated with mutation of TP53 but not PIK3CA, the most mutated genes. Golden Retrievers harbor a TMB-associated and osteosarcoma-enriched mutation signature. Here, we provide a snapshot of canine mutati...