A Mathematical Approach towards the Issue of Synchronization in Neocortical Neural Networks (original) (raw)

When interaction among regularly spiking neurons is simulated, using measured cortical response profiles as experimental input, besides complex networkeffects dominated behavior, embedded periodic behavior is observed. This is the starting point for our theoretical analysis of possible emergence of synchronized neocortical neuronal firing, where we start from the model that complex behavior, as observed in natural neural firing, is generated from such periodic behavior, lumped together in time. We address the question of how, during periods of quasistatic activity, different local centers of such behaviors could synchronize, as has been postulated, e.g., by binding theory. It is shown that for synchronization, methods of self-organization are insufficient: additional structure is needed. As a candidate for this task, thalamic input into layer IV is proposed, which, due to the layer’s recurrent architecture, may trigger macroscopically synchronized bursting among intrinsically non-bu...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact