Upregulation ofArc mRNA expression in the prefrontal cortex following cue-induced reinstatement of extinguished cocaine-seeking behavior (original) (raw)
Related papers
PLoS ONE, 2013
Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR) versus discriminative stimuli (DS) involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cueinduced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH) for activity regulated cytoskeleton-associated protein (Arc) mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior.
Brain Structure and Function, 2008
One of the most insidious features of cocaine addiction is a high rate of relapse even after extended periods of abstinence. A wide variety of drug-associated stimuli, including the context in which a drug is taken, can gain incentive motivational properties that trigger drug desire and relapse to drug-seeking. Both animal and clinical studies suggest that extensive cocaine exposure may induce a transition from cortical to striatal control over decision-making as compulsive drug-seeking emerges. Using an animal model of relapse to cocaine-seeking, the present study investigated the expression patterns of three different activity-related genes (c-fos, zif/268, and arc) in cortical and striatal brain regions implicated in compulsive drug-seeking in order to determine the neuroadaptations that occur during context-induced relapse following brief or prolonged abstinence from cocaine self-administration. Re-exposure to the environment previously associated with cocaine self-administration following 22 h or 15 days of abstinence produced a significant increase in zif/268 and arc, but not c-fos mRNA, in the caudate-putamen and nucleus accumbens. With the exception of arc mRNA levels following 15 days of abstinence, all three genes were increased in the anterior cingulate cortex of animals with a cocaine history when they were re-exposed to the operant chamber. Additionally, c-fos, zif/268, and arc expression was differentially affected in the motor and sensory cortices at both timepoints. Together, these results support convergent evidence that drug-seeking induced by a cocaine-paired context changes the activity of corticostriatal circuits.
Synapse, 2009
The capability of cocaine cues to generate craving in cocaine-dependent humans, even after extended abstinence, is modeled in rats using cue reinstatement of extinguished cocaine-seeking behavior. We investigated neural activity associated with incentive motivational effects of cocaine cues using cfos mRNA and Fos protein expression as markers. Unlike preceding studies, we used responsecontingent presentation of discrete cues to elicit cocaine seeking. Rats were first trained to press a lever, resulting in cocaine reinforcement and light and tone cues. Rats then underwent extinction training, during which lever presses decreased. On the test day, rats either received responsecontingent cocaine cues or received no cues. The cues reinstated extinguished cocaine-seeking behavior on the test day. In general, cue-elicited c-fos mRNA and protein expression were similar and both were enhanced in the prefrontal cortex, ventral tegmental area (VTA), dorsal striatum and nucleus accumbens. Cues elicited more widespread Fos protein expression relative to our previous research in which cues were presented non-contingently without prior extinction training, including increases in the VTA, substantia nigra, ventral subiculum, and lateral entorhinal cortex. We also observed a correlation between cocaine-seeking behavior and Fos in the agranular insula (AgI) and basolateral amygdala (BLA). The findings suggest that connections between BLA and AgI play a role in cue-elicited incentive motivation for cocaine and that reinstatement of cocaine seeking by response-contingent cues activates a similar corticolimbic circuit as that observed with other modes of cue presentation; however, activation of midbrain and ventral hippocampal regions may be unique to reinstatement by response-contingent cues.
Proceedings of the National Academy of Sciences, 2001
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (S D ) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and S D s were withheld. The effects of reexposure to the S D on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine S D , but not the non-reward S D , elicited strong recovery of responding and increased Fos immunore...
Behavioral neuroscience, 2010
We studied the role of cocaine and amphetamine related transcript (CART) in regulating context induced reinstatement (renewal) of reward seeking. Rats were trained to respond for alcoholic beer in context A before extinction in context B. Rats were tested for responding in context A (ABA) and context B (ABB). Intracerebroventricular (ICV) infusions of the active fragment CART55-102 but not the inactive fragment CART1-27 before test prevented ABA renewal of extinguished responding. ICV CART55-102 had no effect on responding in the extinction context (ABB). ICV CART55-102 also altered the profile of behavioral responses observed on test in the training (ABA) but not extinction (ABB) context. These results identify a novel role for CART in preventing reinstatement of reward seeking.
Journal of Neuroscience, 2010
Learning to inhibit drug-seeking can be an important strategy for inhibiting relapse, and this can be modeled by extinguishing drug-seeking in response to a drug-paired context. Rats were either extinguished or withdrawn without extinction training (abstinence) from cocaine self-administration and measurements of postsynaptic density proteins in the core and shell subcompartments of the nucleus accumbens were compared to yoked-saline controls. Only extinguished rats had elevations of PSD-95, Homer1b/c, and Narp in the postsynaptic density of the core, while no proteins measured were altered in the postsynaptic density of the shell in either extinguished or abstinent rats. Using a biotinylation strategy, it was found that surface expression of mGluR5 was reduced only in the core of extinguished animals. While both extinguished and abstinent animals showed a reduction in longterm potentiation elicited in the core by stimulating prefrontal cortex, blunted long-term depression was observed only in extinguished rats. These data indicate that the elevation in Homer1b/c in the core may have sequestered mGluR5 away from the membrane surface, and that the loss of surface mGluR5 inhibits long-term depression. Accordingly, when Homer1c was over-expressed in the core of cocaine naïve rats with an adeno-associated virus, long-term depression was inhibited. This mechanism may contribute to the inhibition of cocaine seeking by extinction training because overexpression Homer1c in the core also inhibited cue-induced reinstatement of cocaine seeking. These data identify a cellular mechanism that may contribute to extinction-induced inhibition of cocaine seeking.
Previous cocaine self-administration disrupts reward expectancy encoding in ventral striatum
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2018
The nucleus accumbens core (NAc) is important for integrating and providing information to downstream areas about the timing and value of anticipated reward. Although NAc is one of the first brain regions to be affected by drugs of abuse, we still do not know how neural correlates related to reward expectancy are affected by previous cocaine self-administration. To address this issue, we recorded from single neurons in the NAc of rats that had previously self-administered cocaine or sucrose (control). Neural recordings were then taken while rats performed an odor-guided decision-making task in which we independently manipulated value of expected reward by changing the delay to or size of reward across a series of trial blocks. We found that previous cocaine self-administration made rats more impulsive, biasing choice behavior toward more immediate reward. Further, compared to controls, cocaine-exposed rats showed significantly fewer neurons in the NAc that were responsive during odo...
Neuroscience, 2010
Environmental enrichment (EE) introduced during abstinence from cocaine self-administration is protective in reducing cue-elicited incentive motivation for cocaine in rats. This study examined neural activation associated with this protective effect of EE using Fos protein expression as a marker. Rats were trained to press a lever reinforced by cocaine (0.75 mg/kg/0.1 ml infusion) and light and tone cues across 15 consecutive days during which they were all housed in isolated conditions (IC). Rats were then assigned to either remain in IC, or to live in pair-housed conditions (PC) or EE for 30 days of forced abstinence from cocaine. Subsequently, cocaineseeking behavior (lever presses without cocaine reinforcement) elicited by response-contingent cue presentations was assessed for 90 min, after which the rats' brains were immediately harvested for Fos protein immunohistochemistry. EE attenuated, whereas IC enhanced, cue-elicited cocaineseeking behavior relative to PC. Also, within the prelimbic and orbitofrontal cortices and basolateral amygdala, IC enhanced, whereas EE reduced, Fos expression relative to PC. Furthermore, EE attenuated Fos expression in the infralimbic and anterior cingulate cortices, the nucleus accumbens (core and shell), bed nucleus of the stria terminalis, and ventral tegmental area, evident as a reduction relative to both PC and IC. In contrast, IC enhanced Fos expression in the dorsal caudate putamen, substantia nigra, and central amygdala, evident as an increase relative to both PC and EE. These results suggest that EE blunts neural activation throughout the mesocorticolimbic circuitry involved in cue-elicited incentive motivation for cocaine, whereas IC enhances activation primarily within the nigrostriatal dopamine pathway. These findings have important implications for understanding and treating drug-conditioned craving in humans.
2012
Cue reinstatement of extinguished cocaine-seeking behavior is a widely used model of cue-elicited craving in abstinent human addicts. This study examined Fos protein expression in response to cocaine cues or to novel cues as a control for activation produced by test novelty. Rats were trained to self-administer cocaine paired with either a light or a tone cue, or received yoked saline and cue presentations, and then underwent daily extinction training. They were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either the cocaine-paired cue or a novel cue (that is, tone for those trained with a light or vice versa). Surprisingly, conditioned and novel cues both reinstated responding and increased Fos similarly in most brain regions. Exceptions included the anterior cingulate, which was sensitive to test cue modality in saline controls and the dorsomedial caudate-putamen, where Fos was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel, and not a familiar, light or tone. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a reinforcement history with cocaine or sucrose, and that both types of cues activate similar brain circuits. Several explanations as to why converging processes may drive drug and novel cue reinforcement and seeking behavior are discussed.
Enduring Resistance to Extinction of Cocaine-Seeking Behavior Induced by Drug-Related Cues
Neuropsychopharmacology, 2001
The conditioning of cocaine's pharmacological actions with environmental stimuli is thought to be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of environmental stimuli in enduring vulnerability to relapse, the resistance to extinction of drug-seeking behavior elicited by a cocainerelated stimulus was examined. Male Wistar rats were trained to associate discriminative stimuli (S D ) with the availability of intravenous cocaine (S ϩ ) vs. the availability of non-rewarding (S Ϫ ) saline solution, and then placed on extinction conditions during which intravenous solutions and S D were withheld. The rats were then presented with the S ϩ or S Ϫ alone in 60-min reinstatement sessions conducted at 3-day intervals. To examine the long-term persistence of the motivating effects of the cocaine S ϩ , a subgroup of rats was re-tested following an additional three months of abstinence during which time the rats remained confined to their home cages. Re-exposure to the cocaine S ϩ selectively elicited robust responding at the previously active lever. The efficacy and selectivity of this stimulus to elicit responding remained unaltered throughout a 34-day phase of repeated testing as well as following the additional extended abstinence period. In pharmacological tests, conducted in a separate group of rats, the dopamine (DA) D 1 antagonist SCH 39166 (10 g/kg), the D 2/3 antagonist nafadotride (1 mg/kg), and the D 2/3 agonist PD 128907 (0.3 mg/kg) suppressed the cue-induced response reinstatement while the D 1 agonist SKF 81297 (1.0 mg/kg) produced a variable behavioral profile attenuating cue-induced responding in some rats while exacerbating this behavior in others. The results suggest that the motivating effects of cocaine-related stimuli are highly resistant to extinction. The undiminished efficacy of the cocaine S ϩ to induce drug-seeking behavior both with repeated testing and following long-term abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in long-lasting vulnerability to relapse associated with cocaine addiction. Finally, the results support a role of DA neurotransmission in cue-induced cocaine-seeking behavior.