Loss of tolerance of anti-dsDNA B cells in mice overexpressing CD19☆ (original) (raw)
Related papers
Journal of Clinical Immunology, 2007
We report here that dysregulation of CD19, a coreceptor that augments B-cell receptor (BCR) signaling, occurs at two B-cell differentiative stages in patients with systemic lupus erythematosus (SLE) and antineutrophil cytoplasmic autoantibody (ANCA) associated small vessel vasculitis (SVV). The naïve B cells of nearly all SLE and ANCA-SVV patients express ∼20% less CD19 than healthy control (HC) B cells. In contrast, a subset of memory B cells of some SLE and ANCA-SVV Pts (25-35%) express two to fourfold more CD19 than HC B cells. These CD19 hi memory B cells are activated and exhibit evidence of antigen selection. Proteome array analysis of 67 autoantigens indicates that CD19 hi SLE Pts exhibit a distinct autoantibody profile characterized by high levels of antibodies to small nuclear ribonucleoproteins and low levels of antiglomerular autoantibodies. These findings have implications for autoreactive B-cell activation and suggest a shared mechanism of B-cell tolerance loss in these two diseases.
CD21/CD19 Coreceptor Signaling Promotes B Cell Survival during Primary Immune Responses
The Journal of Immunology, 2005
The adaptive immune response is tightly regulated to limit responding cells in an Ag-specific manner. On B cells, coreceptors CD21/CD19 modulate the strength of BCR signals, potentially influencing cell fate. The importance of the CD95 pathway was examined in response of B cells to moderate affinity Ag using an adoptive transfer model of lysozyme-specific Ig transgenic (HEL immunoglobulin transgene (MD4) strain) B cells. Although adoptively transferred Cr2+/+ MD4 B cells are activated and persist within splenic follicles of duck egg lysozyme-immunized mice, Cr2−/− MD4 B cells do not. In contrast, Cr2−/− MD4 lpr B cells persist after transfer, suggesting that lack of CD21/CD35 signaling results in CD95-mediated elimination. Cr2 deficiency did not affect CD95 levels, but cellular FLIP (c-FLIP) protein and mRNA levels were reduced 2-fold compared with levels in Cr2+/+ MD4 B cells. In vitro culture with Cr2+/+ MD4 B cells demonstrated that equimolar amounts of rHEL-C3d3 were more effect...
Molecular underpinning of B-cell anergy
Immunological Reviews, 2010
A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.
B-cell maturation and antibody responses in individuals carrying a mutated CD19 allele
Homozygous CD19 mutations lead to an antibody deficiency due to disruption of the CD19 complex and consequent impaired signaling by the B-cell antigen receptor. We studied the effects of heterozygous CD19 mutations on peripheral B-cell development and antibody responses in a large family with multiple consanguineous marriages. Sequence analysis of 96 family members revealed 30 carriers of the CD19 mutation. Lymphocyte subset counts were not significantly different between carriers and noncarriers in three different age groups (0–10 years; 11–18 years; adults). B cells of carriers had reduced CD19 and CD21 median expression levels, and had reduced proportions of transitional (0–10 years) and CD5þ B cells (adults). CD19 carriers did not show clinical signs of immunodeficiency; they were well capable to produce normal serum Ig levels and had normal responses to primary and booster vaccinations. The frequency of mutated Vk alleles was not affected. Heterozygous loss of CD19 causes some changes in the naive B-cell compartment, but overall in vivo B-cell maturation or humoral immunity is not affected. Many antibody deficiencies are not monogenetic, but likely caused by a combination of multiple genetic variations. Therefore, functional analyses of immune cell function should be carried out to show whether heterozygous mutations contribute to disease.
CD19 controls Toll-like receptor 9 responses in human B cells
The Journal of allergy and clinical immunology, 2015
CD19 is a B cell-specific molecule that serves as a major costimulatory molecule for amplifying B-cell receptor (BCR) responses. Biallelic CD19 gene mutations cause common variable immunodeficiency in human subjects. BCR- and Toll-like receptor (TLR) 9-induced B-cell responses are impaired in most patients with common variable immunodeficiency. We sought to analyze whether CD19 is required for TLR9 function in human B cells. Expression of surface activation markers was assessed after anti-IgM or CpG stimulation by using flow cytometry on B cells from patients with 1 or 2 defective CD19 alleles, which decrease or abrogate CD19 expression, respectively. The phosphorylation or interaction of signaling molecules was analyzed by using phospho flow cytometry, immunoblotting, or co-immunoprecipitation in CD19-deficient or control B cells and in a B-cell line in which CD19 has been knocked down with lentivirus-transduced short hairpin RNA. B cells from subjects with 1 or 2 defective CD19 al...
Uncoupling CD21 and CD19 of the B-cell coreceptor
Proceedings of the National Academy of Sciences, 2009
Complement receptors (CRs) CD21 and CD35 form a coreceptor with CD19 and CD81 on murine B cells that when coligated with the B-cell receptor lowers the threshold of activation by several orders of magnitude. This intrinsic signaling role is thought to explain the impaired humoral immunity of mice bearing deficiency in CRs. However, CRs have additional roles on B cells independent of CD19, such as transport of C3-coated immune complexes and regulation of C4 and C3 convertase. To test whether association of CR with CD19 is necessary for their intrinsic activation-enhancing role, knockin mice expressing mutant receptors, Cr2 Δ/Δgfp , that bind C3 ligands but do not signal through CD19 were constructed. We found that uncoupling of CR and CD19 significantly diminishes survival of germinal center B cells and secondary antibody titers. However, B memory is less impaired relative to mice bearing a complete deficiency in CRs on B cells. These findings confirm the importance of interaction of...
International Immunology, 1999
Anti-single stranded DNA (ssDNA) and anti-double stranded DNA (dsDNA) B cells are regulated in non-autoimmune mice. In this report we show that while both anti-ssDNA and anti-dsDNA B cells are blocked in their ability to differentiate into antibody-secreting cells, other phenotypic and functional characteristics distinguish them from one another. Splenic anti-ssDNA B cells are found distributed throughout the B cell follicle, and are phenotypically mature and long-lived. On the other hand, splenic anti-dsDNA B cells are short-lived, exhibit an immature and antigenexperienced phenotype, and localize to the T-B interface of the splenic follicle. Functionally, anti-ssDNA B cells proliferate, albeit suboptimally, in response to anti-IgM, lipopolysaccharide (LPS) and CD40L/IL-4 ⍣ anti-IgM stimulation, and tyrosine phosphorylate intracellular proteins upon mIgM cross-linking. Anti-dsDNA B cells, on the other hand, are functionally unresponsive to anti-IgM and LPS stimulation, and do not phosphorylate intracellular proteins, including Syk, upon mIg stimulation. Importantly, anti-DNA B cell anergy is maintained in the absence of T cells since both anti-ssDNA and anti-dsDNA B cells are as efficiently regulated in RAG2-/mice as in their RAG2 ⍣/⍣ counterparts. Interestingly, the severely anergic state of anti-dsDNA B cells is partially reversible upon stimulation with CD40 ligand and IL-4. In response to these signals, anti-dsDNA B cells remain viable, up-regulate cell surface expression of B7-2 and IgM, and restore their ability to proliferate and phosphorylate Syk upon mIg cross-linking. Collectively, these data suggest that anti-DNA B cell anergy encompasses distinct phenotypes which, even in its most severe form, may be reversible upon stimulation with T cell-derived factors.