Pressure induced band inversion, electronic and structural phase transitions in InTe: A combined experimental and theoretical study (original) (raw)

On the electronic structure and equation of state in high pressure studies of solids

Bulletin of Materials Science, 2003

We discuss the high pressure behaviour of zinc as an interesting example of controversy, and of extensive interplay between theory and experiment. We present its room temperature electronic structure calculations to study the temperature effect on the occurrence of its controversial axial ratio (c/a) anomaly under pressure, and the related electronic topological transition (ETT). We have employed a dense 63 × × 63 × × 29 kpoint sampling of the Brillouin zone and find that the small (c/a) anomaly near 10 GPa pressure persists at room temperature. A weak signature of the anomaly can be seen in the pressure-volume curve, which gets enhanced in the universal equation of state, along with that of K-point ETTs. We attribute the change of slope in the universal equation of state near 10 GPa pressure, mainly to hybridization effects. The temperature effect in fact enhances the possibility of L-point ETT. We find that the L-point ETT is very sensitive to exchange correlation terms, and hence we suggest that further refinements in the theoretical techniques are needed to resolve the controversies on the ETT in Zn.

Vibrational Properties of InSe under Pressure: Experiment and Theory

Physica Status Solidi B-basic Solid State Physics, 1996

The pressure dependence of the phonon modes in the layered semiconductor γ-InSe has been investigated experimentally and theoretically for pressures up to 11 GPa. The mode Grüneisen parameters of all Raman-active zone-center phonons have been determined by Raman scattering under pressure. In addition, features corresponding to second and third-order scattering processes are apparent in the Raman spectra under resonance conditions, from which information about zone-edge modes can be obtained. For the assignment of the observed Raman features to vibrational modes we have calculated the phonon dispersion curves using a rigid-ion model including couplings to first-nearest neighbors and long-range Coulomb interaction. At about 7 GPa the sample turns from transparent to opaque and a new Raman mode appears in the spectra at around 165 cm−1. This is evidence of a pressure-induced structural instability of γ-InSe, which is optically detected but not by X-ray diffraction.

Phonon triggered rhombohedral lattice distortion in vanadium at high pressure

Scientific Reports, 2016

In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C 44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Our results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V. Although body-centered-cubic (bcc) metals have one of the simplest crystal structures in the periodic table, they display a rich variety of physical properties and thus provide an important benchmark for the validation of modern first-principle theory 1. In particular, the lattice dynamics of bcc transition metals have attracted great scientific attention. The Kohn anomaly in the phonon dispersion of bcc transition metals, and its dependence upon pressure and temperature, has been a challenge for first principle calculations to capture 2,3. The strong differences displayed by the phonon dispersion of the various elements of group V (vanadium, niobium and tantalum) suggest that there is a profound dependence of the phonon energies on the electronic structure and the topology of the Fermi surface 4,5. The high superconducting temperature (T c = 9.25 K for Nb and T c = 5.3 K for V) and its notable increase with pressure have also been suggested to be due to electron-phonon coupling and Fermi-surface properties 6-8. The stability at high pressure of the bcc structure is speculated to critically hinge on the topology of the Fermi surface as well, and an intra-band nesting is theoretically predicted to give rise to shear phonon instabilities 9. Focusing on vanadium, calculations of shear instabilities arising from phonon softening 9 have prompted the reinvestigation of the structural stability of V under high pressure. X-ray powder diffraction showed a transition from the bcc to a rhombohedral phase at 69 GPa 10 and subsequent calculations have confirmed the nature of the rhombohedral distortion-even though different transition pressures were proposed 5,11-13. Interestingly, under hydrostatic conditions the transition is hindered, and non-hydrostaticity helps in overcoming the energy barrier associated with the structural phase change 14. Irrespective of the exact pressure at which the transition occurs, the bulk of theoretical work points towards a common mechanism: the progressive intra-band nesting at the Fermi surface that eventually leads to an electronic topological transition (ETT) with a concomitant transverse acoustic phonon mode softening. Specifically, at a critical pressure, parts of the 3rd electronic, partially occupied, conduction band of d symmetry move into the close vicinity of the Fermi level. The nesting vector, already responsible for the Kohn anomaly in the transverse acoustic phonon mode along the (ξ, 0, 0) direction at ξ = 0.25 at ambient pressure 8 , reduces to zero and the ETT takes place, with instability in the shear elastic constant C 44 9. This anomalous softening of the elastic response causes an energy gain that counterbalances the standard elastic strain energy

Pressure dependence of phonon modes across the tetragonal to collapsed-tetragonal phase transition in CaFe_{2}As_{2}

Physical Review B, 2010

The pressure dependence of a large number of phonon modes in CaFe 2 As 2 with energies covering the full range of the phonon spectrum has been studied using inelastic x-ray and neutron scattering. The observed phonon frequency changes are in general rather small despite the sizable changes of the lattice parameters at the phase transition. This indicates that the bonding properties are not profoundly altered by the phase transition. The transverse acoustic phonons propagating along the c-direction are an exception because they stiffen very significantly in response to the large contraction of the c-axis. The lattice parameters are found to change significantly as a function of pressure before, during and after the first-order phase transition. However, the frequencies change nearly uniformly with the change in the lattice parameters due to pressure, with no regard specifically to the first-order phase transition. Density functional theory describes the frequencies in both the zero pressure and in the collapsed phase in a satisfactory way if based on the respective crystal structures.

High pressure phase transition in metallic LaB 6: Raman and X-ray diffraction studies

Solid State Communications, 2004

High pressure Raman and angle dispersive X-ray diffraction (ADXRD) measurements on the metallic hexaboride LaB 6 have been carried out upto the pressures of about 20 GPa. The subtle phase transition around 10 GPa indicated in Raman measurements is confirmed by ADXRD experiments to be a structural change from cubic to orthorhombic phase. Ab-initio electronic band structure calculations using full potential linear augmented plane wave method carried out as a function of pressure show that this transition is driven by the interception of Fermi level by electronic band minimum around the transition pressure.

High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy

Physical Review B, 2013

We present an experimental and theoretical lattice-dynamical study of InN at high hydrostatic pressures. We perform Raman scattering measurements on five InN epilayers, with different residual strain and free electron concentrations. The experimental results are analyzed in terms of ab initio lattice-dynamical calculations on both wurtzite InN (w-InN) and rocksalt InN (rs-InN) as a function of pressure. Experimental and theoretical pressure coefficients of the optical modes in w-InN are compared, and the role of residual strain on the measured pressure coefficients is analyzed. In the case of the LO band, we analyze and discuss its pressure behavior considering the double-resonance mechanism responsible for the selective excitation of LO phonons with large wave vectors in w-InN. The pressure behavior of the L − coupled mode observed in a heavily doped n-type sample allows us to estimate the pressure dependence of the electron effective mass in w-InN. The results thus obtained are in good agreement with k • p theory. The wurtzite-to-rocksalt phase transition on the upstroke cycle and the rocksalt-to-wurtzite backtransition on the downstroke cycle are investigated, and the Raman spectra of both phases are interpreted in terms of DFT lattice-dynamical calculations.

Sharp Raman Anomalies and Broken Adiabaticity at a Pressure Induced Transition from Band to Topological Insulator in Sb2Se3

Physical Review Letters, 2013

The non-trivial electronic topology of a topological insulator is so far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E 2 g phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb 2 Se 3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how non-adiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator.

Structural and electronic properties of InSb under pressure

Physical review. B, Condensed matter, 1993

We have investigated the structural and electronic properties of the III-V semiconductor InSb under pressure by means of first-principles density-functional total-energy calculation using the all-electron full potential linear augmented plane-wave method. We find that in the high-pressure region, the P-Sn structure is unstable and a body-centered orthorhombic structure (space group Imm2) is energetically more favorable. Calculated structural parameters (a/b and a/c ratios, and atomic positions) are in good agreement with a recent highly accurate x-ray-diffraction experiment using an image plate area detector. Theoretical lattice constant and bulk modulus for the normal-pressure zincblende structure is also in very good agreement with experiments. We present calculated structural properties as well as band structures and charge densities for the various structures studied. We discuss the processes of the phase transformation, and also the bonding and structural stabilities in terms of the calculated electronic properties.

Structural, electronic and vibrational properties of InN under high pressure

Physica. B, Condensed Matter, 2012

The structural, electronic and vibrational properties of InN under pressures up to 20 GPa have been investigated using the pseudo-potential plane wave method (PP-PW). The generalized-gradient approximation (GGA) in the frame of density functional theory (DFT) approach has been adopted. It is found that the transition from wurtzite (B4) to rocksalt (B1) phase occurs at a pressure of approximately 12.7 GPa. In addition, a change from a direct to an indirect band gap is observed. The mechanism of these changes is discussed. The phonon frequencies and densities of states (DOS) are derived using the linear response approach and density functional perturbation theory (DFPT). The properties of phonons are described by the harmonic approximation method. Our results show that phonons play an important role in the mechanism of phase transition and in the instability of B4 (wurtzite) just before the pressure of transition. At zero pressure our data agree well with recently reported experimenta...