Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function (original) (raw)
Related papers
S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism
Proceedings of the National Academy of Sciences
We report studies of a Croatian boy, a proven case of human S-adenosylhomocysteine (AdoHcy) hydrolase deficiency. Psychomotor development was slow until his fifth month; thereafter, virtually absent until treatment was started. He had marked hypotonia with elevated serum creatine kinase and transaminases, prolonged prothrombin time and low albumin. Electron microscopy of muscle showed numerous abnormal myelin figures; liver biopsy showed mild hepatitis with sparse rough endoplasmic reticulum. Brain MRI at 12.7 months revealed white matter atrophy and abnormally slow myelination. Hypermethioninemia was present in the initial metabolic study at age 8 months, and persisted (up to 784 microM) without tyrosine elevation. Plasma total homocysteine was very slightly elevated for an infant to 14.5-15.9 microM. In plasma, S-adenosylmethionine was 30-fold and AdoHcy 150-fold elevated. Activity of AdoHcy hydrolase was approximately equal to 3% of control in liver and was 5-10% of the control v...
Advances in rare diseases
Hypermethioninemia may be benign, present as a nonspecific sign of nongenetic conditions such as liver failure and prematurity, or a severe, progressive inborn error of metabolism. Genetic causes of hypermethioninemia include mitochondrial depletion syndromes caused by mutations in the MPV17 and DGUOK genes and deficiencies of cystathionine β-synthase, methionine adenosyltransferase types I and III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase, citrin, fumarylacetoacetate hydrolase, and adenosine kinase. Here we present a 3-year old girl with a history of poor feeding, irritability, respiratory infections, cholestasis, congenital heart disease, neurodevelopmental delay, hypotonia, sparse hair, facial dysmorphisms, liver dysfunction, severe hypermethioninemia and mild homocystinemia. Genetic analysis of the adenosine kinase (ADK) gene revealed a previously unreported variant (c.479-480 GA>TG) resulting in a stop codon (p.E160X) in ADK. A methionine-restricted diet...
Journal of inherited metabolic disease, 2002
Two Korean sisters, one detected during neonatal screening, the other ascertained at age 3 years during family screening, have persistent hypermethioninaemia without elevation of plasma tyrosine or severe liver disease. Plasma total homocysteine (tHcy) is mildly elevated, but not so markedly as to establish a diagnosis of homocystinuria due to cystathionine beta-synthase (CBS) deficiency. CBS deficiency was ruled out by the presence of slightly elevated concentrations of plasma cystathionine. Although the plasma concentrations of methionine were markedly elevated, plasma S-adenosylmethionine (AdoMet) was not. This pattern of metabolic abnormalities suggested that the patients have deficient activity of methionine adenosyltransferase (MAT) in their livers (MAT I/III deficiency). Molecular genetic studies demonstrate that each patient is a compound heterozygote for two mutations in MAT1A, the gene that encodes the catalytic subunit that composes MAT I and MAT III: a previously known i...
Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options
Journal of Inherited Metabolic Disease, 2015
Background Adenosine kinase deficiency is a recently described defect affecting methionine metabolism with a severe clinical phenotype comprising mainly neurological and hepatic impairment and dysmorphism. Methods Clinical data of 11 additional patients from eight families with adenosine kinase deficiency were gathered through a retrospective questionnaire. Two liver biopsies of one patient were systematically evaluated. Results The main clinical symptoms are mild to severe liver dysfunction with neonatal onset, muscular hypotonia, global developmental retardation and dysmorphism (especially frontal bossing). Hepatic involvement is not a constant finding. Most patients have epilepsy and recurrent hypoglycemia due to hyperinsulinism. Major biochemical findings are intermittent hypermethioninemia, increased S-adenosylmethionine and Sadenosylhomocysteine in plasma and increased adenosine in urine. S-adenosylmethionine and S-adenosylhomocysteine are the most reliable biochemical markers. The major histological finding was pronounced microvesicular hepatic steatosis. Therapeutic trials with a methionine restricted diet indicate a potential beneficial effect on biochemical and clinical parameters in four patients and hyperinsulinism was responsive to diazoxide in two patients. Conclusion Adenosine kinase deficiency is a severe inborn error at the crossroad of methionine and adenosine metabolism that mainly causes dysmorphism, brain and liver symptoms, but also recurrent hypoglycemia.
Molecular Genetics and Metabolism, 2010
Methionine adenosyltransferases (MAT's) are central enzymes in living organisms that have been conserved with a high degree of homology among species. In the liver, MAT I and III, tetrameric and dimeric isoforms of the same catalytic subunit encoded by the gene MAT1A, account for the predominant portion of total body synthesis of S-adenosylmethionine (SAM), a versatile sulfonium ion-containing molecule involved in a variety of vital metabolic reactions and in the control of hepatocyte proliferation and differentiation. During the past 15 years 28 MAT1A mutations have been described in patients with elevated plasma methionines, total homocysteines at most only moderately elevated, and normal levels of tyrosine and other aminoacids. In this study we describe functional analyses that determine the MAT and tripolyphosphatase (PPPase) activities of 18 MAT1A variants, six of them novel, and none of them previously assayed for activity. With the exception of G69S and Y92H, all recombinant proteins showed impairment (usually severe) of MAT activity. Tripolyphosphate (PPPi) hydrolysis was decreased only in some mutant proteins but, when it was decreased MAT activity was always also impaired.
Methionine adenosyltransferase I/III deficiency: beyond the central nervous system manifestations
Therapeutics and Clinical Risk Management, 2018
Methionine adenosyltransferase (MAT) I/III deficiency (OMIM # 250850) is caused by a mutation in MAT1A, which encodes the two hepatic MAT isozymes I and III. With the implementation of newborn screening program to discover hypermethioninemia due to cystathionine beta-synthase deficiency, more cases are being discovered. While the majority of patients are asymptomatic, some might have central nervous system (CNS) and extra-CNS manifestations. Although neurologic manifestations and demyelination have been correlated to MAT deficiency in many reported cases, none of the previous reports focused on extra-CNS manifestations associated with the disease. This is a retrospective chart review for a 40-month-old patient with confirmed diagnosis of MAT deficiency. He was found to have a novel homozygous diseasecausing variant in MAT1A (NM_000429.2) c.1081G.T (p.Val361Phe). Interestingly, our patient had an unexplained zinc and iron deficiency in addition to mild speech delay. We reviewed the literature and summarized all the reported extra-CNS manifestations. In conclusion, MAT deficiency patients should be thoroughly investigated to check for CNS and extra-CNS manifestations associated with the disease. Keeping in consideration the challenge of assuming correlation, a scrutinized look at extra-CNS manifestations and their course with time might pave the way to understanding the pathophysiology of the disease and MAT1A function.
Methionine Adenosyltransferase I/III Deficiency: Novel Mutationsand Clinical Variations
The American Journal of Human Genetics, 2000
Methionine adenosyltransferase (MAT) I/III deficiency, caused by mutations in the MAT1A gene, is characterized by persistent hypermethioninemia without elevated homocysteine or tyrosine. Clinical manifestations are variable and poorly understood, although a number of individuals with homozygous null mutations in MAT1A have neurological problems, including brain demyelination. We analyzed MAT1A in seven hypermethioninemic individuals, to provide insight into the relationship between genotype and phenotype. We identified six novel mutations and demonstrated that mutations resulting in high plasma methionines may signal clinical difficulties. Two patients-a compound heterozygote for truncating and severely inactivating missense mutations and a homozygote for an aberrant splicing MAT1A mutation-have plasma methionine in the 1,226-1,870 mM range (normal 5-35 mM) and manifest abnormalities of the brain gray matter or signs of brain demyelination. Another compound heterozygote for truncating and inactivating missense mutations has 770-1,240 mM plasma methionine and mild cognitive impairment. Four individuals carrying either two inactivating missense mutations or the single-allelic R264H mutation have 105-467 mM plasma methionine and are clinically unaffected. Our data underscore the necessity of further studies to firmly establish the relationship between genotypes in MAT I/III deficiency and clinical phenotypes, to elucidate the molecular bases of variability in manifestations of MAT1A mutations.
The Journal of biological chemistry, 2001
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main alkylating agent in living cells. Additionally, in the liver, MAT is also responsible for up to 50% of methionine catabolism. Humans with mutations in the gene MAT1A, the gene that encodes the catalytic subunit of MAT I and III, have decreased MAT activity in liver, which results in a persistent hypermethioninemia without homocystinuria. The hypermethioninemic phenotype associated with these mutations is inherited as an autosomal recessive trait. The only exception is the dominant mild hypermethioninemia associated with a G-A transition at nucleotide 791 of exon VII. This change yields a MAT1A-encoded subunit in which arginine 264 is replaced by histidine. Our results indicate that in the homologous rat enzyme, replacement of the equivalent arginine 265 by histidine (R265H) results in a monomeric MAT with only 0.37% of the AdoMet synthetic activity. However the tripolyphosphatase ...