Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? (original) (raw)

Abstract

The pathophysiology of liver injury has attracted the interest of experimentalists and clinicians over many centuries. With the discovery of liver-specific pericytes -formerly called fat-storing cells, Ito-cells, lipocytes, and currently designated as hepatic stellate cells (HSC) -the insight into the cellular and molecular pathobiology of liver fibrosis has evolved and the pivotal role of HSC as a precursor cell-type for extracellular matrixproducing myofibroblasts has been established. Although activation and transdifferentiation of HSC to myofibroblasts is still regarded as the pathogenetic key mechanism of fibrogenesis, recent studies point to a prominent heterogeneity of the origin of myofibroblasts. Currently, the generation of matrix-synthesizing fibroblasts by epithelialmesenchymal transition, by influx of bone marrow-derived fibrocytes into damaged liver tissue, and by differentiation of circulating monocytes to fibroblasts after homing in the injured liver are discussed as important complementary mechanisms to enlarge the pool of (myo-)fibroblasts in the fibrosing liver. Among the molecular mediators, transforming growth factor-beta (TGF-b) plays a central role, which is controlled by the bonemorphogenetic protein (BMP)-7, an important antagonist of TGF-b action. The newly discovered pathways supplement the linear concept of HSC activation to myofibroblasts, point to fibrosis as a systemic response involving extrahepatic organs and reactions, add further evidence to a more or less uniform concept of organ fibrosis in general (e.g. liver, lung, kidney), and offer innovative approaches for the development of non-invasive biomarkers and antifibrotic trials.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (173)

  1. Hartroft WS. The trabecular anatomy of late stages of experimental dietary cirrhosis. Anat. Rec. 1954; 119: 71-94.
  2. Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. J. Clin. Pathol. 1978; 31: 395-414.
  3. McGee JO, Patrick RS. The role of perisinusoidal cells in hepatic fibrogenesis. Lab. Invest. 1972; 26: 429-40.
  4. Kent G, Gay S, Inouye T, Bahu R, Minick OT, Popper H. Vitamin A-containing lipocytes and formation of type III collagen in liver injury. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 3719-22.
  5. Kent G, Minick T, Inouye T. Nature and role of vitamin A-storing cells. J. Cell Biol. 1977; 75: 193a.
  6. Kent G, Inouye T, Minick OT, Bahu RM. Role of lipocytes (perisinusoidal cells) in fibrogenesis. In: Wisse E, Knook DL, eds. Kupffer Cells and Other Liver Sinusoidal Cells. Amsterdam: Elsevier/North-Holland Biomedical Press, 1977; 73-82.
  7. Boll F. Die Bindesubstanz der Drüsen. Arch. Mikrosk. Anat. 1869; 4: 334-55.
  8. Kupffer K. Über Sternzellen der Leber. Briefliche Mitteilung an Professor Waldeyer. Arch. Mikrosk. Anat. 1876; 12: 353-8.
  9. Ito T, Nemoto J. Über die Kupfferschen Sternzellen und die 'Fettspeicherungszellen' ('fat-storing cells') in der Blutkapillarenwand der menschlichen Leber. Okajimas Folia Anat. Jpn. 1952; 24: 243-58.
  10. Wake K. Sternzellen in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am. J. Anat. 1971; 132: 429-62.
  11. Aterman K. The parasinusoidal cells of the liver: a historical account. Histochem. J. 1986; 18: 279-305.
  12. Zimmermann KW. Der feinere Bau der Blutcapillaren. Z. Anat. Entwicklungsgesch. 1923; 68: 29-109.
  13. Bronfenmajer S, Schaffner F, Popper H. Fat storing cells (lipocytes) in human liver. Arch. Pathol. 1966; 82: 447-53.
  14. Ahern M, Hall P, Halliday J et al. Hepatic stellate cell nomenclature. Hepatology 1996; 23: 193.
  15. Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct. Funct. 2003; 28: 105-12.
  16. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001; 21: 311-35.
  17. Knook DL, Seffelaar AM, De Leeuw AM. Fat storing cells of the rat liver. Their isolation and purification. Exp. Cell Res. 1982; 139: 468-71.
  18. DeLeeuw AM, McCarthy SP, Geerts A, Knook DL. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 1984; 4: 392-403.
  19. Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology 1992; 15: 234-43.
  20. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 8681-5.
  21. Schäfer S, Zerbe O, Gressner AM. The synthesis of proteoglycans in fat storing cells of rat liver. Hepatology 1987; 7: 680-7.
  22. Arenson DM, Friedman SL, Bissell DM. Formation of extracellular matrix in normal rat liver: lipocytes as a major source of proteoglycan. Gastroenterology 1988; 95: 441-7.
  23. Gressner AM, Haarmann R. Hyaluronic acid synthesis and secretion by rat liver fat storing cells (perisinusoidal lipocytes) in culture. Biochem. Biophys. Res. Commun. 1988; 151: 222-9.
  24. Ramadori G, Rieder H, Theiss F, Meyer zum Büschenfelde KH. Fat storing (Ito) cells of rat liver synthesize and secrete apolipoproteins: comparison with hepatocytes. Gastroenterology 1989; 97: 163-72.
  25. Ramadori G, Schwögler S, Veit T et al. Tenascin gene expression in rat liver and in rat liver cells. Virchows Arch. B Cell Pathol. 1991; 60: 145-53.
  26. Zhao L, Burt AD. The diffuse stallate cell system. J. Mol. Hist. 2007; 38: 53-64.
  27. Schuppan D, Gressner AM. Function and metabolism of collagens and other extracellular matrix proteins. In: Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rodés J, eds. Oxford Textbook of Clinical Hepatology. Oxford: Oxford Medical Publications, 1999; 381-407.
  28. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin. Liver Dis. 2001; 21: 351-72.
  29. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J. Cell Mol. Med. 2006; 10: 76-99.
  30. de Caestecker MP, Piek E, Roberts AB. Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 2000; 92: 1388-402.
  31. Bataller R, Brenner DA. Liver fibrosis. J. Clin. Invest. 2005; 115: 209-18.
  32. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin. Chim. Acta 2006; 364: 33-60.
  33. Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 2003; 37: 493-503.
  34. Hillebrandt S, Wasmuth HE, Weiskirchen R et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat. Genet. 2005; 37: 835-43.
  35. Rockey DC. Antifibrotic therapy in chronic liver disease. Clin. Gastroenterol. Hepatol. 2005; 3: 95-107.
  36. Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963; 44: 239-42.
  37. Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastr. 2004; 1: 98-105.
  38. Wake K. Hepatic stellate cells: three-dimensional structure, localization, heterogeneity and development. Proc. Jpn. Acad. 2006; 82: 155-64.
  39. Marcos R, Rocha E, Henrique RMF, Monteiro RAF. A new approach to an unbiased estimate of the hepatic stellate cell index in the rat liver: an example in healthy conditions. J. Histochem. Cytochem. 2003; 51: 1101-4.
  40. Blomhoff R, Wake K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J. 1991; 5: 271-7.
  41. Winau F, Hegasy G, Weiskirchen R et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 2007; 26: 117-29.
  42. Maubach G, Lim MCC, Kumar S, Zhuo L. Expression and upregulation of cathepsin S and other early molecules required for antigen presentation in activated hepatic stellate cells upon IFN-[gamma] treatment. Biochim. Biophys. Acta-Mol. Cell Res. 2007; 1773: 219-31.
  43. Vinas O, Bataller R, Sancho-Bru P et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003; 38: 919-29.
  44. Kordes C, Sawitza I, Muller-Marbach A et al. CD133+ hepatic stellate cells are progenitor cells. Biochem. Biophys. Res. Commun. 2007; 352: 410-17.
  45. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest. 2003; 83: 655-63.
  46. Zhan S-S, Jiang JX, Wu J et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43: 435-43.
  47. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJP. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 1996; 110: 821-31.
  48. Benyon RC, Arthur MJP. Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis. 2001; 21: 373-84.
  49. Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 2007; 315: 1853-6.
  50. Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericytes? Hepatology 2007; 45: 817-25.
  51. Bataller R, Gines P, Nicolas JM et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 2000; 118: 1149-56.
  52. Bataller R, Nicolas JM, Gines P et al. Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells. Gastroenterology 1997; 113: 615-24.
  53. Rockey D. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin. Liver Dis. 2001; 21: 337-49.
  54. Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut 2002; 50: 571-81.
  55. Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int. 1996; 49: S39-45.
  56. Gressner AM, Lahme B, Brenzel A. Molecular dissection of the mitogenic effect of hepatocytes on cultured hepatic stellate cells. Hepatology 1995; 22: 1507-18.
  57. Gressner AM, Gao C. A cascade-mechanism of fat storing cell activation forms the basis of the fibrogenic reaction of the liver. Verh. Dtsch. Ges. Pathol. 1995; 79: 1-14.
  58. Gressner AM, Lotfi S, Gressner G, Lahme B. Identification and partial characterization of a hepatocyte-derived factor promoting proliferation of cultured fat storing cells (parasinusoidal lipocytes). Hepatology 1992; 16: 1250-66.
  59. Gressner AM, Lahme B. Inhibitory actions of hepatocyte plasma membranes on proliferation, protein-and proteoglycan synthesis of cultured rat fat storing cells. In: Wisse E, Knook DL, McCuskey RS, eds. Cells of the Hepatic Sinusoid, Vol. 3. Leiden: The Kupffer Cell Foundation, 1991; 237-41.
  60. Gressner AM, Lotfi S, Gressner G, Haltner E, Kropf J. Synergism between hepatocytes and Kupffer cells in the activation of fat storing cells (perisinusoidal lipocytes). J. Hepatol. 1993; 19: 117-32.
  61. Gressner AM, Lahme B. Treatment of rat hepatocytes with transforming growth factor-beta1 increases their mitogenic activity for cultured fat storing cells. Inter. Hepatol. Commun. 1995; 4: 94-101.
  62. Roth S, Michel K, Gressner AM. (Latent) transforming growth factor-beta in liver parenchymal cells, its injury-dependent release and paracrine effects on hepatic stellate cells. Hepatology 1998; 27: 1003-12.
  63. Hoffmann Ch, Lahme B, Brenzel A, Gressner AM. The relation between hepatocellular damage and activation of fat storing cell proliferation in vitro. Inter. Hepatol. Commun. 1994; 2: 29-36.
  64. Bachem. MG, Melchior R, Gressner AM. The role of thrombocytes in liver fibrogenesis. Effects of platelet lysate and thrombocyte-derived growth factors on the mitogenic activity and glycosaminoglycan synthesis of cultured rat liver fat storing cells. J. Clin. Chem. Clin. Biochem. 1989; 27: 555-65.
  65. Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur. J. Biochem. 1990; 192: 245-61.
  66. Friedman SL, Arthur MJP. Kupffer cell mediated proliferation of lipocytes occurs via induction of receptors for platelet-derived growth factor -studies in rats and humans. Hepatology 1989; 10: 632.
  67. Gressner AM, Haarmann R. Regulation of hyaluronate synthesis in rat liver fat storing cell cultures by Kupffer cells. J. Hepatol. 1988; 7: 310-18.
  68. Gressner AM, Zerbe O. Kupffer cell-mediated induction of synthesis and secretion of proteoglycans by rat liver fat storing cells in culture. J. Hepatol. 1987; 5: 299-310.
  69. Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of rodent Kupffer cells in stellate cells. Hepatology 2006; 44: 1487-501.
  70. Adachi T, Togashi H, Suzuki A et al. NAD (P) H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 2005; 41: 1272-81.
  71. Baroni GS, D'Ambrosio L, Ferretti G et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 1998; 27: 720-6.
  72. Casini A, Ceni E, Salzano R et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25: 361-7.
  73. Boschung HT. The Audubon Society Field Guide to North American Fishes, Whales, and Dolphins. New York: Knopf: Distributed by Random House, 1983.
  74. Casini A, Galli G, Salzano R et al. Acetaldehyde induces c-fos and c-jun proto-oncogenes in fat-storing cell cultures through protein kinase C activation. Alcohol 1994; 29: 303-14.
  75. Anania FA, Womack L, Potter JJ, Mezey E. Acetaldehyde enhances murine alpha(2)(I) collagen promoter activity by Ca2+-independent protein kinase C activation in cultured rat hepatic stellate cells. Alcohol. Clin. Exp. Res. 1999; 23: 279-84.
  76. Svegliati-Baroni G, Ridolfi F, di Sario A et al. Intracellular signaling pathways involved in acetaldehyde-induced collagen and fibronectin gene expression in human hepatic stellate cells. Hepatology 2001; 33: 1130-40.
  77. Corpechot C, Barbu V, Wendum D et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35: 1010-21.
  78. Reeves HL, Friedman SL. Activation of hepatic stellate cells -A key issue in liver fibrosis. Front. Biosci. 2002; 7: D808-26.
  79. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-b in hepatic fibrosis. Front. Biosci. 2002; 7: D793-807.
  80. Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front. Biosci. 2003; 8: D69-77.
  81. Inagaki Y, Okazaki I. Emerging insights into Transforming growth factor {beta} Smad signal in hepatic fibrogenesis. Gut 2007; 56: 284-92.
  82. Feige JJ, Baird A. Crinopexy: extracellular regulation of growth factor action. Kidney Int. 1995; 47 (Suppl. 49): S15-18.
  83. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis. 2001; 21: 397-416.
  84. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver - Evidence for autocrine regulation of hepatocyte proliferation. J. Clin. Invest. 1995; 96: 447-55.
  85. Marra F, Bonewald LF, Parksnyder S, Park IS, Woodruff KA, Abboud HE. Characterization and regulation of the latent transforming growth factor-beta complex secreted by vascular pericytes. J. Cell Physiol. 1996; 166: 537-46.
  86. Gressner AM, Polzar B, Lahme B, Mannherz HG. Induction of rat liver parenchymal cell apoptosis by hepatic myofibroblasts via transforming growth factor-beta. Hepatology 1996; 23: 571-81.
  87. Gressner AM, Lahme B, Mannherz HG, Polzar B. TGF-beta-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J. Hepatol. 1997; 26: 1079-92.
  88. Oberhammer F, Bursch W, Parzefall W et al. Effect of transforming growth factor beta on cell death of cultured rat hepatocytes. Cancer Res. 1991; 51: 2478-85.
  89. Oberhammer FA, Pavelka M, Sharma S et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor-beta1. Proc. Natl Acad. Sci. U.S.A. 1992; 89: 5408-12.
  90. Kiso S, Kawata S, Tamura S et al. Alteration in growth regulation of hepatocytes in primary culture obtained from cirrhotic rat: poor response to transforming growth factor-beta 1 and interferons. Hepatology 1994; 20: 1303-8.
  91. Bissell DM, Roulot D, George J. Transforming growth factor b and the liver. Hepatology 2001; 34: 859-67.
  92. Koli K, Saharinen J, Hyytiainen M, Penttinen C, Keski-Oja J. Latency, activation, and binding proteins of TGF-beta. Microsc. Res. Tech. 2001; 52: 354-62.
  93. Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3′ coding sequence of transforming growth factor-b1 inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ. 2002; 13: 265-73.
  94. De Gouville AC, Huet S. Inhibition of ALK5 as a new approach to treat liver fibrotic diseases. Drug News Perspect. 2006; 19: 85-90.
  95. Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 2000; 31: 1094-106.
  96. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGF beta 1 in initiating hepatic stellate cell activation in vivo. J. Hepatol. 1999; 30: 77-87.
  97. Friedman SL. Transcriptional regulation of stellate cell activation. J. Gastroenterol. Hepatol. 2006; 31: S79-83.
  98. Iwamoto H, Sakai H, Nawata H. Inhibition of integrin signaling with Arg-Gly-Asp motifs in rat hepatic stellate cells. J. Hepatol. 1998; 29: 752-9.
  99. Gutierrez-Ruiz M, Gomez-Quiroz LE. Liver fibrosis: searching for cell model answers. Liver Int. 2007; 27: 434-9.
  100. Geerts A, Vrijsen R, Rauterberg J, Burt A, Schellinck P, Wisse E. In vitro differentiation of fat storing cells parallels marked increase of collagen synthesis and secretion. J. Hepatol. 1989; 9: 59-68.
  101. Sun K, Wang Q, Huang XH. PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta-induced connective tissue growth factor expression. Acta Pharmacol. Sin. 2006; 27: 715-23.
  102. De Minicis S, Seki E, Uchinami H et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 2007; 132: 1937-46.
  103. Wake K, Sato T. Intralobular heterogeneity of perisinusoidal stellate cells in porcine liver. Cell Tissue Res. 1993; 273: 227-37.
  104. Ballardini G, Groff P, DeGiorgi LB, Schuppan D, Bianchi FB. Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver. Hepatology 1994; 19: 440-6.
  105. Zou ZZ, Ekataksin W, Wake K. Zonal and regional differences identified from precision mapping of vitamin A-storing lipid droplets of the hepatic stellate cells in pig liver: a novel concept of addressing the intralobular area of heterogeneity. Hepatology 1998 April; 27: 1098-108.
  106. Geerts A, Lazou JM, De Bleser P, Wisse E. Tissue distribution, quantitation and proliferation kinetics of fat storing cells in carbon tetrachloride-injured rat liver. Hepatology 1991; 13: 1193-202.
  107. Horn T, Junge J, Christoffersen P. Early alcoholic liver injury. Activation of lipocytes in acinar zone 3 and correlation to degree of collagen formation in Disse space. J. Hepatol. 1986; 3: 333-40.
  108. Knittel T, Kobold D, Piscaglia F et al. Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (Myo-) fibroblast subpopulations in hepatic tissue repair. Histochem. Cell Biol. 1999; 112: 387-401.
  109. Knittel T, Kobold D, Saile B et al. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 1999; 117: 1205-21.
  110. Kobold D, Grundmann A, Piscaglia F et al. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J. Hepatol. 2002; 36: 607-13.
  111. Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 2004; 40: 1151-9.
  112. Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J. Hepatol. 2002; 37: 527-35.
  113. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev. Cancer 2006; 6: 392-401.
  114. Ramadori G, Saile B. Portal tract fibrogenesis in the liver. Lab. Invest. 2003; 84: 153-9.
  115. Ikegami T, Zhang Y, Matsuzaki Y. Liver fibrosis. Possible involvement of EMT. Cells Tissues Organs 2007; 185: 213-21.
  116. Li J, Deane JA, Campanale NV, Bertram JF, Ricardo SD. The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells 2007; 25: 697-706.
  117. Gao Zh, McAlister VC, Williams GM. Repopulation of liver endothelium by bone-marrow-derived cells. Lancet 2001; 357: 932-3.
  118. Fujii H, Hirose T, Oe S et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J. Hepatol. 2002; 36: 653-9.
  119. Baba S, Fujii H, Hirose T et al. Commitment of bone marrow cells to hepatic stellate cells in mouse. J. Hepatol. 2004; 40: 255-60.
  120. Russo FP, Alison MR, Bigger BW et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130: 1807-21.
  121. Forbes SJ, Russo FP, Rey V et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126: 955-63.
  122. Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 2006; 45: 429-38.
  123. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 2006; 8: 145-50.
  124. Bucala R, Spiegel LA, Chesney AH, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1994; 1: 71-81.
  125. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 2001; 166: 7556-62.
  126. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 2004; 36: 598-606.
  127. Strieter RM, Gomperts BN, Keane MP. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest. 2007; 117: 549-56.
  128. Ishii G, Sangai T, Sugiyama K et al. In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells 2005; 23: 699-706.
  129. Higashiyama R, Inagaki Y, Hong YY et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 2007; 45: 213-22.
  130. Moore BB, Kolodsick JE, Thannickal VJ et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol. 2005; 166: 675-84.
  131. Marra F. Hepatic stellate cells and the regulation of liver inflammation. J. Hepatol. 1999; 31: 1120-30.
  132. Clouston AD, Powell EE, Walsh MJ, Richardson MM, Demetris AJ, Jonsson JR. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology 2005; 41: 809-18.
  133. Romagnani P, Lasagni L, Romagnani S. Peripheral blood as a source of stem cells for regenerative medicine. Exp. Opin. Biol. Ther. 2006; 6: 193-202.
  134. Ruhnke M, Ungefroren H, Nussler A et al. Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 2005; 128: 1774-86.
  135. Ruhnke M, Nussler AK, Ungefroren H et al. Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy. Transplantation 2005; 79: 1097-103.
  136. Pinzani M, Abboud HE, Gesualdo L, Abboud SL. Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors. Am. J. Physiol. 1992; 262: C876-81.
  137. Marra F, Valente AJ, Pinzani M, Abboud HE. Cultured human liver fat storing cells produce monocyte chemotactic protein-1 - Regulation by proinflammatory cytokines. J. Clin. Invest. 1993; 92: 1674-80.
  138. Sprenger H, Kaufmann A, Garn H, Lahme B, Gemsa D, Gressner AM. Induction of neutrophil attracting chemokines in transforming hepatic stellate cells. Gastroenterology 1997; 113: 277-85.
  139. Marra F, Defranco R, Grappone C et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am. J. Pathol. 1998; 152: 423-30.
  140. Pilling D, Buckley CD, Salmon M, Gomer RH. Inhibition of fibrocyte differentiation by serum amyloid P. J. Immunol. 2003; 171: 5537-46.
  141. Pilling D, Roife D, Wang M, Crawford JR, Travis EL, Gomer RH. Inhibition of bleomycin-induced pulmonary fibrosis by serum amyloid P. In: Wynn TA, Gallatin WM, Lupher M, Jr, ed. Keystone Symposia on Molecular and Cellular Biology -Abstract Book. Tahoe City: Keystone Symposia, 2007; 45 [Abstract].
  142. 142 Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V. Hepatic stellate cells do not derive from the neural crest. J. Hepatol. 2006; 44: 1098-104.
  143. Geerts A. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal? J. Hepatol. 2004 February; 40: 331-4.
  144. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 2006; 172: 973-81.
  145. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 2003; 112: 1776-84.
  146. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 2002; 110: 341-50.
  147. Karasek MA. Does transformation of microvascular endothelial cells into myofibroblasts play a key role in the etiology and pathology of fibrotic disease? Med. Hypotheses 2007; 68: 650-5.
  148. 148 Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem. 2007; 282: 23337-47.
  149. Kaimori A, Potter J, Kaimori J, Wang C, Mezey E, Koteish A. TGF-beta 1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in-vitro. J. Biol. Chem. 2007; 282: 22089-101.
  150. Robertson H, Kirby JA, Yip WW, Jones DEJ, Burt AD. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45: 977-81.
  151. Rygiel KA, Robertson H, Burt AD, Jones DEJ, Kirby JA. Demonstration of the transition of intrahepatic biliary epithelial cells to fibroblasts during chronic inflammatory liver diseases. J. Hepatol. 2006; 44: S241.
  152. Kinnman N, Francoz C, Barbu W et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab. Invest. 2003; 83: 163-73.
  153. Beaussier M, Wendum D, Schiffer E et al. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab. Invest. 2007; 87: 292-303.
  154. Yang Y, Pan X, Lei W et al. Regulation of transforming growth factor-{beta}1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res. 2006; 66: 8617-24.
  155. del Castillo G, Murillo MM, varez-Barrientos A et al. Autocrine production of TGF-[beta] confers resistance to apoptosis after an epithelial-mesenchymal transition process in hepatocytes: role of EGF receptor ligands. Exp. Cell Res. 2006; 312: 2860-71.
  156. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Gene Dev. 2004; 18: 1131-43.
  157. 157 Zeisberg M, Hanai J, Sugimoto H et al. BMP-7 counteracts TGF-beta 1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003; 9: 964-8.
  158. Sugimoto H, Yang C, LeBleu VS et al. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J. 2007; 21: 256-64.
  159. Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor {beta} in mesangial cells. J. Biol. Chem. 2004; 279: 23200-6.
  160. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem. Sci. 2004; 29: 265-73.
  161. Neilson EG. Setting a trap for tissue fibrosis. Nat. Med. 2005; 11: 373-4.
  162. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 2007; 117: 557-67.
  163. Gressner O, Lahme B, Demirci I, Gressner AM, Weiskirchen R. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J. Hepatol. 2007; 47: 699-710.
  164. Rachfal AW, Brigstock DR. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol. Res. 2003; 26: 1-9.
  165. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol. 2002; 4: 599-604.
  166. Abou-Shady M, Friess H, Zimmermann A et al. Connective tissue growth factor in human liver cirrhosis. Liver 2000; 20: 296-304.
  167. Paradis V, Dargere D, Vidaud M et al. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology 1999; 30: 968-76.
  168. Blom IE, Goldschmeding R, Leask A. Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy. Matrix Biol. 2002; 21: 473-82.
  169. Li G, Xie Q, Shi Y et al. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J. Gene Med. 2006; 8: 889-900.
  170. George J, Tsutsumi M. siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther. 2007; 14: 790-803.
  171. Zeisberg M. Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol. Dial. Transplant. 2006; 21: 568-73.
  172. Kinoshita K, Iimuro Y, Otogawa K et al. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut 2007; 56: 706-14.
  173. Gressner AM, Yagmur E, Lahme B, Gressner O, Stanzel S. Connective tissue growth factor in serum as a new candidate test for assessment of hepatic fibrosis. Clin. Chem. 2006; 52: 1815-17.