Computational detection, analysis and interpretations of genomic variants in human diseases associated GENEMDM 2 (original) (raw)

In-Silico Characterization of Non-Synonymous Single Nucleotide Polymorphisms in Human MDM2: Implications for Cancer Susceptibility

2024

The oncogene MDM2 (Murine Double Minute 2) was first found in DNA and bound to the paired acentric chromosome. 0SNPs (single nucleotide polymorphisms) are important for determining the genetic basis of several complicated human disorders. Non-synonymous single nucleotide polymorphisms (nsSNPs) are mutation in only a one nucleotide in sequences of any gene that has changed the specific synthesized protein in its function, structure and morphogenesis. Finding the affected SNPs in the genetic make-up of diseases remains a difficult task. The present Insilico study explored and identified the genetic variation that affects and modifies the expression of MDM2 genes. SIFT found that 36 SNPs in the MDM2 gene are harmful while polyphen2 analyzed 12 SNPs in MDM2 gene. An aggregate result was obtained by examining six tools with diverse views, and seven nsSNPs were shown to be the most likely to have a detrimental impact. I-Mutant and Project HOPE approaches were utilized to predict the mutant proteins' severe structural and functional instability, while the InterPro was utilised the predict SNP in crucial functional domains. Only 9 SNPs rs764034976, rs753663917, rs761546875, rs755429424, rs764918809, rs763077439, rs765555199, rs1475420873 and rs550783815 were discovered that influence the structure, function, and stability of the MDM2 protein synthesized by MDM2 gene. To our knowledge, there has never been any research on the SNPs of the MDM2 gene. This is the first study on the MDM2 gene using computation methods.

A Single Nucleotide Polymorphism in the MDM2 Gene: From a Molecular and Cellular Explanation to Clinical Effect

Cancer Research, 2005

In a recent article, a candidate pathway approach was taken to try to identify single nucleotide polymorphisms (SNP) that make up the genetic variation, which underlies the phenotypic variation seen between individuals in their susceptibility to cancer and the progression of their disease. The p53 stress response pathway was chosen given its well-documented importance in tumor suppression. A SNP was found which associates with the attenuation of the p53 pathway and the acceleration of tumor formation in humans and data was presented which describe a molecular mechanism for these phenotypes. (Cancer Res 2005; 65(13): 5481-4)

Rapid Detection of SNP (c.309T>G) in the MDM2 Gene by the Duplex SmartAmp Method

PLoS ONE, 2013

Background: Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP) c.309T.G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans. Methodology: In this study, to detect the SNP c.309T.G in the MDM2 gene, we have developed a new SNP detection method, named ''Duplex SmartAmp,'' which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms. Results and Conclusions: By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T.G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.

MDM2 promoter SNP285 and SNP309; phylogeny and impact on cancer risk

Oncotarget, 2011

MDM2 plays a key role to physiological processes like growth arrest, senescence and apoptosis. It binds to and inhibits key proteins like p53 and the RB protein, and MDM2 amplification as well as protein overexpression without amplification is seen in many solid tumors. An MDM2 promoter polymorphism (SNP309T>G) has been found associated with enhanced Sp1 transcription factor binding and elevated MDM2 transcription. While 309G has been found associated with elevated cancer risk and young age at diagnosis of different cancers, results in Caucasians have been at variance. Recently, we reported a second polymorphism (SNP285G>C) located on the 309G allele. The 285C/309G haplotype accounts for about 12% of all 309G alleles among Norwegians, Dutch and British habitants. Assessing Sp1 binding to the MDM2 promoter using surface plasmon resonance technology, we found SNP309G to enhance Sp1 binding by 22% while SNP285C reduced Sp1 binding by 51%. SNP285C reduced the risk of breast cancer...

MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

PLoS ONE, 2012

The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T.G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G.C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T.A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk.

Haplotype structure and selection of the MDM2 oncogene in humans

Proceedings of the National Academy of Sciences, 2007

The MDM2 protein is an ubiquitin ligase that plays a critical role in regulating the levels and activity of the p53 protein, which is a central tumor suppressor. A SNP in the human MDM2 gene (SNP309 T/G) occurs at frequencies dependent on demographic history and has been shown to have important differential effects on the activity of the MDM2 and p53 proteins and to associate with altered risk for the development of several cancers. In this report, the haplotype structure of the MDM2 gene is determined by using 14 different SNPs across the gene from three different population samples: Caucasians, African Americans, and the Ashkenazi Jewish ethnic group. The results presented in this report indicate that there is a substantially reduced variability of the deleterious SNP309 G allele haplotype in all three populations studied, whereas multiple common T allele haplotypes were found in all three populations. This observation, coupled with the relatively high frequency of the G allele haplotype in both and Caucasian and Ashkenazi Jewish population data sets, suggests that this haplotype could have undergone a recent positive selection sweep. An entropy-based selection test is presented that explicitly takes into account the correlations between different SNPs, and the analysis of MDM2 reveals a significant departure from the standard assumptions of selective neutrality.

Knapskog, S. Et al. 2012. MDM2 Promoter SNP344T.A (rs1196333) Status Does Not Affect Cancer Risk

PLoS ONE, 2012

The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T.G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G.C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T.A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk.

An In silico Approach towards Finding the Cancer-Causing Mutations in Human MET Gene

International Journal of Genomics

Mesenchymal–epithelial transition (MET) factor is a proto-oncogene encoding tyrosine kinase receptor with hepatocyte growth factor (HGF) or scatter factor (SF). It is found on the human chromosome number 7 and regulates the diverse cellular mechanisms of the human body. The impact of mutations occurring in the MET gene is demonstrated by their detrimental effects on normal cellular functions. These mutations can change the structure and function of MET leading to different diseases such as lung cancer, neck cancer, colorectal cancer, and many other complex syndromes. Hence, the current study focused on finding deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) and their subsequent impact on the protein’s structure and functions, which may contribute to the emergence of cancers. These nsSNPs were first identified utilizing computational tools like SIFT, PROVEAN, PANTHER-PSEP, PolyPhen-2, I-Mutant 2.0, and MUpro. A total of 45359 SNPs of MET gene were accumulated from...

Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649)

Oncotarget, 2014

The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles har...

Interpreting missense variants: comparing computational methods in human disease genes CDKN2A , MLH1 , MSH2 , MECP2 , and tyrosinase ( TYR

Human Mutation, 2007

The human genome contains frequent single-basepair variants that may or may not cause genetic disease. To characterize benign vs. pathogenic missense variants, numerous computational algorithms have been developed based on comparative sequence and/or protein structure analysis. We compared computational methods that use evolutionary conservation alone, amino acid (AA) change alone, and a combination of conservation and AA change in predicting the consequences of 254 missense variants in the CDKN2A (n = 92), MLH1 (n = 28), MSH2 (n = 14), MECP2 (n = 30), and tyrosinase (TYR) (n = 90) genes. Variants were validated as either neutral or deleterious by curated locus-specific mutation databases and published functional data. All methods that use evolutionary sequence analysis have comparable overall prediction accuracy (72.9–82.0%). Mutations at codons where the AA is absolutely conserved over a sufficient evolutionary distance (about one-third of variants) had a 91.6 to 96.8% likelihood of being deleterious. Three algorithms (SIFT, PolyPhen, and A-GVGD) that differentiate one variant from another at a given codon did not significantly improve predictive value over conservation score alone using the BLOSUM62 matrix. However, when all four methods were in agreement (62.7% of variants), predictive value improved to 88.1%. These results confirm a high predictive value for methods that use evolutionary sequence conservation, with or without considering protein structural change, to predict the clinical consequences of missense variants. The methods can be generalized across genes that cause different types of genetic disease. The results support the clinical use of computational methods as one tool to help interpret missense variants in genes associated with human genetic disease. Hum Mutat 28(7), 683–693, 2007. Published 2007 Wiley-Liss, Inc.