Simulation of Rainfall Using Two Statistical Data Driven Models: A Study on Santhal Pargana Division of Jharkhand State, India (original) (raw)

Although the variability and prediction of rainfall is an essential issue of the Santhal Pargana Division of the Jharkhand State but the issue is still far from its' conclusive statement till date. Therefore, this study aimed to simulate the monthly rainfall from 1901 to 2020 using an eight-step procedure. After downloading the monthly rainfall for the Santhal Pargana Division from 1901 to 2020, the TBATS and Naive models were used to simulate the rainfall. The accuracy assessment of each model was done by using the MASE, MAE, RMSE, ME, and R. For the Naïve model, the Godda station was noticed with a comparatively high combined error. The lowest combined error was found for the Pakur station in case of Naïve models. Similar result was also obtained for the TBATS model. The TBATS was found with comparatively higher accuracy, as the combined error was less for the TBATS. The spatial assessment for the standardized rainfall varied from 84.419 mm. to 149.225 mm. For the Naïve predicted model, the rainfall was marked in between 8.133 mm. to 67.059 mm. For the TBATS fitted model, the rainfall fluctuated from the 37.127 mm. to 62.993 mm. Dumka station was noticed with comparatively low rainfall (i.e.,37.127 mm.). Deoghar and Jamtara stations were marked with a moderate rainfall. Remaining stations were marked with higher amount of rainfall for the TBATS fitted model. The Wilcoxon test proved that each model was significant at 95% confidence interval. The result produced in this research is fruitful enough to be utilized for agricultural planning in the Santhal Pargana Division of the Jharkhand state, India.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.