The Formation of Low-metallicity Globular Clusters in Dwarf Galaxy Mergers (original) (raw)

Formation of globular clusters in galaxy mergers

arXiv (Cornell University), 2003

Our numerical simulations first demonstrate that the pressure of ISM in a major merger becomes so high ($>$ 10510^5105 rmkrmB\rm k_{\rm B}rmkrmB K rmcm−3\rm cm^{-3}rmcm3) that GMCs in the merger can collapse to form globular clusters (GCs) within a few Myr. The star formation efficiency within a GMC in galaxy mergers can rise up from a few percent to sim\simsim 80 percent, depending on the shapes and the temperature of the GMC. This implosive GC formation due to external high pressure of warm/hot ISM can be more efficient in the tidal tails or the central regions of mergers. The developed clusters have King-like profile with the effective radius of a few pc. The structural, kinematical, and chemical properties of these GC systems can depend on orbital and chemical properties of major mergers.

Evolution of the mass, size, and star formation rate in high redshift merging galaxies

Astronomy & Astrophysics, 2014

Context. In Λ-CDM models, galaxies are thought to grow both through continuous cold gas accretion coming from the cosmic web and episodic merger events. The relative importance of these different mechanisms at different cosmic epochs is nevertheless not yet well understood. Aims. We aim at addressing the questions related to galaxy mass assembly through major and minor wet merging processes in the redshift range 1 < z < 2, an epoch corresponding to the peak of the cosmic star formation history. A significant fraction of Milky Way-like galaxies are thought to have undergone an unstable clumpy phase at this early stage. We focus on the behavior of the young clumpy disks when galaxies are undergoing gas-rich galaxy mergers. Methods. Using the adaptive mesh refinement code RAMSES, we build the Merging and Isolated high-Redshift Adaptive mesh refinement Galaxies (MIRAGE) sample. It is composed of 20 mergers and 3 isolated idealized disks simulations, which sample disk orientations and merger masses. Our simulations can reach a physical resolution of 7 parsecs, and include: star formation, metal line cooling, metallicity advection, and a recent physically-motivated implementation of stellar feedback which encompasses OB-type stars radiative pressure, photo-ionization heating, and supernovae. Results. The star formation history of isolated disks shows stochastic star formation rate, which proceeds from the complex behavior of the giant clumps. Our minor and major gas-rich merger simulations do not trigger starbursts, suggesting a saturation of the star formation due to the detailed accounting of stellar feedback processes in a turbulent and clumpy interstellar medium fed by substantial accretion from the circum-galactic medium. Our simulations are globally close to the normal regime of the disk-like star formation on a Schmidt-Kennicutt diagram. The mass-size relation and its rate of evolution in the redshift range 1 < z < 2 matches observations, suggesting that the inside-out growth mechanisms of the stellar disk do not necessarily require to be achieved through a cold accretion.

Formation of star clusters and enrichment by massive stars in simulations of low-metallicity galaxies with a fully sampled initial stellar mass function

Monthly Notices of the Royal Astronomical Society

We present new griffin project hydrodynamical simulations that model the formation of galactic star cluster populations in low-metallicity (Z = 0.00021) dwarf galaxies, including radiation, supernova, and stellar wind feedback of individual massive stars. In the simulations, stars are sampled from the stellar initial mass function (IMF) down to the hydrogen-burning limit of 0.08 M⊙. Mass conservation is enforced within a radius of 1 pc for the formation of massive stars. We find that massive stars are preferentially found in star clusters and follow a correlation set at birth between the highest initial stellar mass and the star cluster mass that differs from pure stochastic IMF sampling. With a fully sampled IMF, star clusters lose mass in the galactic tidal field according to mass-loss rates observed in nearby galaxies. Of the released stellar feedback, 60 per cent of the supernova material and up to 35 per cent of the wind material reside either in the hot interstellar medium (IS...

Numerical Simulations of Merging Clusters of Galaxies

The Astrophysical Journal Supplement Series, 1997

We present results from three-dimensional numerical simulations of head-on mergers between two clusters of galaxies using a hybrid hydro/N-body code. In these simulations, the gaseous intracluster medium (ICM) is evolved as a massless Ñuid within a changing gravitational potential deÐned by the collisionless dark matter component. The ICM is represented by the equations of hydrodynamics which are solved by an Eulerian, Ðnite-di †erence method. The cluster dark matter component is represented by the N-body particle distribution. A series of simulations have been conducted in which we have systematically varied the cluster-subcluster mass ratio between 8 : 1 and 1 : 1. We Ðnd that cluster-subcluster mergers result in an elongation of both the cluster dark matter and gas distributions. The dark matter distribution is elongated parallel to the merger axis and accompanied by anisotropy in the dark matter velocity dispersion. Both the elongation and corresponding velocity anisotropy are sustained for more than 5 Gyr after the merger. The elongation of the gas distribution is also generally along the merger axis, although shocks and adiabatic compressions produce elongations perpendicular to the merger axis at various times during the merger. We also Ðnd a signiÐcant o †set between dark matter and gas centroids in the period following core passage. The gasdynamics is also severely a †ected by the cluster-subcluster merger. In these simulations, the subcluster enters the primary at supersonic speeds initiating bulk Ñows that can exceed 2000 km s~1. The width of the bulk Ñows are seen to range between several hundred kiloparsecs to nearly 1 Mpc. We believe the bulk Ñows can produce the bending of wide-angle tailed (WAT) radio sources. The most signiÐcant gasdynamics is seen to subside on timescales of 2 Gyr, although still signiÐcant dynamics is seen even after 5 Gyr. The merger-induced gasdynamics may also play a role in the formation of radio halo sources, and, consequently, the sustained nature of the gasdynamics may extend the lifetime of halos beyond the canonical synchrotron lifetime of the source. Substructure, shocks, and adiabatic cooling during the merger can result in a very complex temperature structure within the intracluster medium. As a result of these mergers, we Ðnd temperature inhomogeneities of several keV on linear scales of ¹0.5 Mpc. Finally, these simulations indicate that even relatively high mass-ratio mergers (e.g., 8 : 1) result in nonequilibrium conditions for an extended period of time. The period of time with the most signiÐcant dynamical evolution is within 2 Gyr after core passage. The nonequilibrium conditions have implications for cluster mass estimates. The observable consequences of cluster mergers and their inÑuence on cluster mass estimates are addressed in Roettiger, Burns, & Loken (1996).

The driving mechanism of starbursts in galaxy mergers

2010

We present hydrodynamic simulations of a major merger of disk galaxies, and study the ISM dynamics and star formation properties. High spatial and mass resolutions of 12 pc and 4 × 10 4 M ⊙ allow to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare to lower resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of star formation are generally attributed to large-scale gas inflows towards the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid star formation therein. As a consequence, star formation is more efficient by a factor of up to ∼ 10 and is also somewhat more extended, while the gas density probability distribution function (PDF) rapidly evolves towards very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10 3 K. Not only does our model reproduce the properties of the Antennae system, but it also explains the "starburst mode" revealed recently in high-redshift mergers compared to quiescent disks.

Synchronized Formation of Starburst and Post-starburst Galaxies in Merging Clusters of Galaxies

The Astrophysical Journal …, 2010

We propose that synchronized triggering of star formation in gas-rich galaxies is possible during major mergers of cluster of galaxies, based on new numerical simulations of the time evolution of the physical properties of the intracluster medium (ICM) during such a merger event. Our numerical simulations show that the external pressure of the ICM in which cluster member galaxies are embedded, can increase significantly during cluster merging. As such, efficient star formation can be triggered in gas-rich members as a result of the strong compression of their cold gas by the increased pressure. We also suggest that these star-forming galaxies can subsequently be transformed into poststarburst galaxies, with their spatial distribution within the cluster being different to the rest of its population. We discuss whether this possible merger-induced enhancement in the number of star-forming and post-star-forming cluster galaxies is consistent with the observed evolution of galaxies in merging clusters.

The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium

2021

We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the Griffin project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M incorporate non-equilibrium heating, cooling and chemistry processes, and realise individual massive stars. All the simulations follow feedback channels of massive stars that include the interstellar-radiation field, that is variable in space and time, the radiation input by photo-ionisation and supernova explosions. Varying the star formation efficiency per free-fall time in the range εff = 0.2 50% neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with εff , the ambient densities of supernovae are independent of εff indicating a decoupling of the two processes. At low εff , more massive, and increasingly more bound star clus...

The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters

Monthly Notices of the Royal Astronomical Society, 2007

We study the origin of the diffuse stellar component (DSC) in 117 galaxy clusters extracted from a cosmological hydrodynamical simulation. We identify all galaxies present in the simulated clusters at 17 output redshifts, starting with z = 3.5, and then build the family trees for all the z = 0 cluster galaxies. The most massive cluster galaxies show complex family trees, resembling the merger trees of dark matter halos, while the majority of other cluster galaxies experience only one or two major mergers during their entire life history. Then for each diffuse star particle identified at z = 0, we look for the galaxy to which it once belonged at an earlier redshift, thus linking the presence of the diffuse stellar component to the galaxy formation history.

The impact of ISM turbulence, clustered star formation and feedback on galaxy mass assembly through cold flows and mergers

2010

Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z ≈ 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z ≈ 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved.

Star formation in galaxy mergers: ISM turbulence, dense gas excess, and scaling relations for disks and starbusts

2010

Galaxy interactions and mergers play a significant, but still debated and poorly understood role in the star formation history of galaxies. Numerical and theoretical models cannot yet explain the main properties of merger-induced starbursts, including their intensity and their spatial extent. Usually, the mechanism invoked in merger-induced starbursts is a global inflow of gas towards the central kpc, resulting in a nuclear starburst. We show here, using high-resolution AMR simulations and comparing to observations of the gas component in mergers, that the triggering of starbursts also results from increased ISM turbulence and velocity dispersions in interacting systems. This forms cold gas that are denser and more massive than in quiescent disk galaxies. The fraction of dense cold gas largely increases, modifying the global density distribution of these systems, and efficient star formation results. Because the starbursting activity is not just from a global compacting of the gas to higher average surface densities, but also from higher turbulence and fragmentation into massive and dense clouds, merging systems can enter a different regime of star formation compared to quiescent disk galaxies. This is in quantitative agreement with recent observations suggesting that disk galaxies and starbursting systems are not the low-activity end and high-activity end of a single regime, but actually follow different scaling relations for their star formation.