Cryptic purine transporters inAspergillus nidulansreveal the role of specific residues in the evolution of specificity in the NCS1 family (original) (raw)
Abstract
NCS1 proteins are H 1 or Na 1 symporters responsible for the uptake of purines, pyrimidines or related metabolites in bacteria, fungi and some plants. Fungal NCS1 are classified into two evolutionary and structurally distinct subfamilies, known as Fur-and Fcy-like transporters. These subfamilies have expanded and functionally diversified by gene duplications. The Fur subfamily of the model fungus Aspergillus nidulans includes both major and cryptic transporters specific for uracil, 5fluorouracil, allantoin or/and uric acid. Here we functionally analyse all four A. nidulans Fcy transporters (FcyA, FcyC, FcyD and FcyE) with previously unknown function. Our analysis shows that FcyD is moderate-affinity, low-capacity, highly specific adenine transporter, whereas FcyE contributes to 8-azaguanine uptake. Mutational analysis of FcyD, supported by homology modelling and substrate docking, shows that two variably conserved residues (Leu356 and Ser359) in transmembrane segment 8 (TMS8) are critical for transport kinetics and specificity differences among Fcy transporters, while two conserved residues (Phe167 and Ser171) in TMS3 are also important for function. Importantly, mutation S359N converts FcyD to a promiscuous nucleobase transporter capable of recognizing adenine, xanthine and several nucleobase analogues. Our results reveal the importance of specific residues in the functional evolution of NCS1 transporters.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (46)
- Alguel, Y., Amillis, S., Leung, J., Lambrinidis, G., Capaldi, S., Scull, N.J., et al. (2016) Structure of eukaryotic purine/H(1) symporter UapA suggests a role for homodi- merization in transport activity. Nat Commun 7: 11336.
- Apostolaki, A., Harispe, L., Calcagno-Pizarelli, A.M., Vangelatos, I., Sophianopoulou, V., Arst, H.N., Jr., et al. (2012) Aspergillus nidulans CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Mol Microbiol 84: 530-549.
- Amillis, S., Hamari, Z., Roumelioti, K., Scazzocchio, C., and Diallinas, G. (2007) Regulation of expression and kinetic modelling of substrate interactions of a uracil transporter in Aspergillus nidulans. Mol Membr Biol 24: 206-214.
- Belenky, P.A., Moga, T.G., and Brenner, C. (2008) Saccha- romyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem 283: 8075-8079.
- Danielsen, S., Kilstrup, M., Barilla, K., Jochimsen, B., and Neuhard, J. (1992) Characterization of the Escherichia coli codBA operon encoding cytosine permease and cyto- sine deaminase. Mol Microbiol 6: 1335-1344.
- de Koning, H., and Diallinas, G. (2000) Nucleobase trans- porters. Mol Membr Biol 17: 75-94.
- de Montigny, J., Straub, M.L., Wagner, R., Bach, M.L., and Chevallier, M.R. (1998) The uracil permease of Schizo- saccharomyces pombe: a representative of a family of 10 transmembrane helix transporter proteins of yeasts. Yeast 14: 1051-1059.
- Diallinas, G., and Gournas, C. (2008) Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic sys- tems. Channels (Austin) 2: 363-372.
- Enjo, F., Nosaka, K., Ogata, M., Iwashima, A., and Nishimura, H. (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cer- evisiae. J Biol Chem 272: 19165-19170.
- Evangelinos, M., Martzoukou, O., Chorozian, K., Amillis, S., and Diallinas, G. (2016) BsdA(Bsd2)-dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy. Mol Microbiol 100: 893-911.
- Frillingos, S. (2012) Insights to the evolution of nucleobase- ascorbate transporters (NAT/NCS2 family) from the Cys- scanning analysis of xanthine permease XanQ. Int J Bio- chem Mol Biol 3: 250-272.
- Gabriel, F., Sabra, A., El-Kirat-Chatel, S., Pujol, S., Fitton- Ouhabi, V., Bre `thes, D., et al. (2014) Deletion of the uracil permease gene confers cross-resistance to 5-fluorouracil and azoles in Candida lusitaniae and high- lights antagonistic interaction between fluorinated nucleo- tides and fluconazole. Antimicrob Agents Chemother 58: 4476-4485.
- Galanopoulou, K., Scazzocchio, C., Galinou, M.E., Liu, W., Borbolis, F., Karachaliou, M., et al. (2014) Purine utiliza- tion proteins in the Eurotiales: cellular compartmentaliza- tion, phylogenetic conservation and divergence. Fungal Genet Biol 69: 96-108.
- Girke, C., Daumann, M., Niopek-Witz, S., and M€ ohlmann, T. (2014) Nucleobase and nucleoside transport and integration into plant metabolism. Front Plant Sci 5: 443.
- Gournas, C., Papageorgiou, I., and Diallinas, G. (2008) The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol Biosyst 4: 404-416.
- Hamari, Z., Amillis, S., Drevet, C., Apostolaki, A., V agv€ olgyi, C., Diallinas, G., and Scazzocchio, C. (2009) Convergent evolution and orphan genes in the Fur4p-like family and characterization of a general nucleoside trans- porter in Aspergillus nidulans. Mol Microbiol 73: 43-57.
- Hope, W.W., Tabernero, L., Denning, D.W., and Anderson, M.J. (2004) Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48: 4377-4386.
- Jund, R., Weber, E., and Chevallier, M.R. (1988) Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171: 417-424.
- Krypotou, E., Kosti, V., Amillis, S., Myrianthopoulos, V., Mikros, E., and Diallinas, G. (2012) Modeling, substrate docking, and mutational analysis identify residues essen- tial for the function and specificity of a eukaryotic purine- cytosine NCS1 transporter. J Biol Chem 287: 36792- 36803.
- Krypotou, E., and Diallinas, G. (2014) Transport assays in filamentous fungi: kinetic characterization of the UapC purine transporter of Aspergillus nidulans. Fungal Genet Biol 63: 1-8.
- Krypotou, E., Evangelidis, T., Bobonis, J., Pittis, A.A., Gabald on, T., Scazzocchio, C., Mikros, E., and Diallinas, G. (2015) Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Mol Microbiol 96: 927-950.
- Meintanis, C., Karagouni, A.D., and Diallinas, G. (2000) Amino acid residues N450 and Q449 are critical for the uptake capacity and specificity of UapA, a prototype of a nucleobase-ascorbate transporter family. Mol Membr Biol 17: 47-57.
- Minton, J.A., Rapp, M., Stoffer, A.J., Schultes, N.P., and Mourad, G.S. (2016) Heterologous complementation stud- ies reveal the solute transport profiles of a two-member nucleobase cation symporter 1 (NCS1) family in Physco- mitrella patens. Plant Physiol Biochem 100: 12-17.
- Mourad, G.S., Tippmann-Crosby, J., Hunt, K.A., Gicheru, Y., Bade, K., Mansfield, T.A., and Schultes, N.P. (2012) Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis. FEBS Lett 586: 1370-1378.
- Nayak, T., Szewczyk, E., Oakley, C.E., Osmani, A., Ukil, L., Murray, S.L., et al. (2006) A versatile and efficient gene- targeting system for Aspergillus nidulans. Genetics 172: 1557-1566.
- Paluszynski, J.P., Klassen, R., Rohe, M., and Meinhardt, F. (2006) Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccha- romyces cerevisiae. Yeast 23: 707-715.
- Pantazopoulou, A., and Diallinas, G. (2007) Fungal nucleo- base transporters. FEMS Microbiol Rev 31: 657-675.
- Punt, P.J., Dingemanse, M.A., Kuyvenhoven, A., Soede, R.D., Pouwels, P.H., and van den Hondel, C.A. (1990) Functional elements in the promoter region of the Asper- gillus nidulans gpdA gene encoding glyceraldehyde-3- phosphate dehydrogenase. Gene 93: 101-109.
- Ortlund, E.A., Bridgham, J.T., Redinbo, M.R., and Thornton, J.W. (2007) Crystal structure of an ancient pro- tein: evolution by conformational epistasis. Science 317: 1544-1548.
- Rapp, M., Schein, J., Hunt, K.A., Nalam, V., Mourad, G.S., and Schultes, N.P. (2016) The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility. Proto- plasma 253: 611-623.
- Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbour, NY: Cold Spring Harbour Press.
- Schein, J.R., Hunt, K.A., Minton, J.A., Schultes, N.P., and Mourad, G.S. (2013) The nucleobase cation symporter 1 of Chlamydomonas reinhardtii and that of the evolutionar- ily distant Arabidopsis thaliana display parallel function and establish a plant-specific solute transport profile. Plant Physiol Biochem 70: 52-60.
- Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., and Farid, R. (2006a) Novel procedure for modelling ligand/ receptor induced fit effects. J Med Chem 49: 534-553.
- Sherman, W., Beard, H.S., and Farid, R. (2006b) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67: 83-84.
- Shimamura, T., Weyand, S., Beckstein, O., Rutherford, N.G., Hadden, J.M., Sharples, D., et al. (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328: 470-473.
- Simmons, K.J., Jackson, S.M., Brueckner, F., Patching, S.G., Beckstein, O., Ivanova, E., et al. (2014) Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J 33: 1831-1844.
- Singleton, C.K. (1997) Identification and characterization of the thiamine transporter gene of Saccharomyces cerevi- siae. Gene 199: 111-121.
- Stolz, J., and Vielreicher, M. (2003) Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cer- evisiae. J Biol Chem 278: 18990-18996.
- Vickers, M.F., Yao, S.Y., Baldwin, S.A., Young, J.D., and Cass, C.E. (2000) Nucleoside transporter proteins of Saccharomy- ces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a trans- porter (FUN26) with broad nucleoside selectivity in intracel- lular membranes. J Biol Chem 275: 25931-25938.
- Vlanti, A., and Diallinas, G. (2008) The Aspergillus nidulans FcyB cytosine-purine scavenger is highly expressed during germination and in reproductive compartments and is downregulated by endocytosis. Mol Microbiol 68: 959-977.
- Weber, E., Rodriguez, C., Chevallier, M.R., and Jund, R. (1990) The purine-cytosine permease gene of Saccharo- myces cerevisiae: primary structure and deduced protein sequence of the FCY2 gene product. Mol Microbiol 4: 585-596.
- Weyand, S., Shimamura, T., Yajima, S., Suzuki, S., Mirza, O., Krusong, K., et al. (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322: 709-713.
- Witz, S., Jung, B., F€ urst, S., and M€ ohlmann, T. (2012) De novo pyrimidine nucleotide synthesis mainly occurs out- side of plastids, but a previously undiscovered nucleo- base importer provides substrates for the essential salvage pathway in Arabidopsis. Plant Cell 24: 1549-1559.
- Witz, S., Panwar, P., Schober, M., Deppe, J., Pasha, F.A., Lemieux, M.J., and M€ ohlmann, T. (2014) Structure-func- tion relationship of a plant NCS1 member-homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from Arabidopsis. PLoS One 9: e91343.
- Yoo, H.S., Cunningham, T.S., and Cooper, T.G. (1992) The allantoin and uracil permease gene sequences of Sac- charomyces cerevisiae are nearly identical. Yeast 8: 997-1006.
- Young, J.D., Yao, S.Y., Baldwin, J.M., Cass, C.E., and Baldwin, S.A. (2013) The human concentrative and equi- librative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med 34: 529-547.