Origin determination of the Eastern oyster (Crassostrea virginica) using a combination of whole-body compound-specific isotope analysis and heavy metal analysis (original) (raw)
Related papers
Environmental Monitoring and Assessment, 2017
The concentrations of Cu, Cd, Pb, Zn, and Hg in diploid and triploid oysters from three farms (Guasave, Ahome, and Navolato) on the north-central coast of Sinaloa, Mexico, were assessed based on samples recovered during a single culture cycle 2013-2014. Metal burdens were more strongly correlated (p < 0.05) with the location of the farm than with either the ploidy or the interaction of both variables. The metal concentration ranking for oysters of both ploidies from the three farms was Zn > Cu > Cd > Pb > Hg. For all three farms, the mean concentrations of Cd and Pb in Crassostrea gigas were high, ranging from 2.52 to 7.98 μg/g wet weight for Cd and from 0.91 to 2.83 μg/g wet weight for Pb. Diploid and triploid oysters from the Guasave farm contained high levels of Cu (76.41 and 68.97 μg/g wet weight, respectively). Cu, Cd, and Zn were highly correlated (p < 0.05), and their concentrations may be influenced by agrochemical inputs. The mean levels of Cu for the Guasave farm and of Cd and Pb for all three farms exceeded permissible limits and represented a threat to human health during the sampling period (July 2014 to July 2014).
Chemosphere, 1997
The concentrations of trace metals [Pb, Cd, Zn, Cu. Fe, and Cr), from three coastal lagoons (Mecoacan, Carmen and Machona) in the southern Gulf of Mexico, were measured in oysters and recent sediments. The mean values in oysters were lower than those found in the northern Gulf of Mexico, with the exception of copper in Mecoacan and chromium in the three lagoons. The mean values in sediments were much lower than those in the northern Gulf, with the exception of cadmium, that presented similar values in both places. Significant correlations were found between the condition index and salinity (r=0.645) and the concentration of copper (r=-0.652).
2016
Abstract: This study aims to assess baseline concentrations of heavy metals (Cd, Cr, Cu, Pb and Zn) in the oyster soft tissue as they relate to concentrations in the water column (particulate phase) and sediment in Apalachicola Bay. In order to conduct these assessments, a total of 360 samples, collected in two seasons (winter and summer) and were analyzed using atomic absorption spectrometry. Results indicated that elemental concentrations in particulate phase correlate significantly with concentration in the tissue than those in the sediment. Moreover, assessment of seasonal and spatial variations have indicated that oysters collected in the winter have significantly higher (P<0.05) Cu, Pb and Zn concentrations than oysters collected in the summer. However, metal concentrations in sediment did not show such patterns. These observations confirmed the fact that metals in the particulate phase are more bioavailable to oysters and that the oysters can be used as good indicators of ...
Chemosphere, 2017
The aim of the study was to evaluate the bioavailability of trace metals (Chromium, Copper, Nickel, Lead, Zinc, Cadmium, Arsenic, and Mercury) in the commercially consumed Crassostrea gigas oysters collected over a 12-month growth period (2011-12) from an experimental cultivation farm in La Pitahaya, Sinaloa State, Mexico. Sediment and water samples were also collected from four different zones adjacent to the cultivation area to identify the concentration patterns metals. The results revealed that sewage disposals, fertilizers used for agricultural practices and shrimp culture are the major sources for the enrichment of certain toxic metals. The metal concentrations in oysters presented a decreasing order of abundance (all values in mg Kg-1
Environmental Geochemistry and Health, 2018
The Pacific oyster (Crassostrea gigas) is one of the world's most widespread bivalves and a suitable species for biomonitoring metals in coastal environments. In the present research, wild individuals were collected from an Argentinian estuary and the coastal beaches nearby. The concentrations of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were quantified in the soft tissues of the Pacific oyster. Among the metals, Cu, Fe and Zn reached the highest concentrations in the soft tissues over the rest of the elements. The results showed the highest values to be estuary related, with the beach site achieving the lowest values. These results possibly lie on the impact of human activities surrounding the estuary, as well as streams and rivers that outflow within it. Higher Cu and Zn levels, both port related, were mainly found toward the outer estuary. On the other hand, high levels of Cr, Fe and Mn were found toward the inner zone of the estuary, an area with sewage sludge from the cities located on the margins of the BBE. Regarding the potential risk to public health, Cu and Zn levels found in C. gigas were above national and international safety guidelines in 100% and 11% of the samples, respectively.
2005
This study aims to assess baseline concentrations of heavy metals (Cd, Cr, Cu, Pb and Zn) in the oyster soft tissue as they relate to concentrations in the water column (particulate phase) and sediment in Apalachicola Bay. In order to conduct these assessments, a total of 360 samples, collected in two seasons (winter and summer) and were analyzed using atomic absorption spectrometry. Results indicated that elemental concentrations in particulate phase correlate significantly with concentration in the tissue than those in the sediment. Moreover, assessment of seasonal and spatial variations have indicated that oysters collected in the winter have significantly higher (P<0.05) Cu, Pb and Zn concentrations than oysters collected in the summer. However, metal concentrations in sediment did not show such patterns. These observations confirmed the fact that metals in the particulate phase are more bioavailable to oysters and that the oysters can be used as good indicators of the spatia...
Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell
Environmental Geology, 2000
Oysters and sediment have been collected from most major US Gulf of Mexico bays and estuaries each year since 1986. Selected samples of oyster soft tissue, shell and sediments were analyzed for Cd, Cr, Cu, Fe, Mn, Pb, and Zn for this study. Concentrations varied considerably from place to place but ratios of metals remained relatively constant. Cu and Zn are greatly enriched in oyster tissues, which is related to their physiological function. Cd is enriched in oyster shell because of the easy substitution between Cd and Ca. The concentrations of Pb and Cr in oysters are significantly lower than that in sediment, suggesting a good discrimination against these metals by oysters. Metal variations are a result of both nature and human activity.
Heavy-metal contamination of the Pacific oysters (Crassostrea gigas) cultured in Deep Bay, Hong Kong
Environmental Research, 1981
Samples of Pacific oysters, Crassosfrea gigas, cultured in Deep Bay, Hong Kong, were collected for analysis of various heavy-metal contents: iron, copper, lead, cadmium, manganese, chromium, and zinc. In general, the gill had the highest metal contents, followed by the mantle, the viscera, with the smallest amount being observed in the adductor muscle. All metal contents obtained in the present study were within the range reported for the same species in areas where heavy-metal pollution is already recognized as a problem. A longterm monitoring program of measuring the contents of various metals in seawater, sediment, and oysters is therefore essential.
In order to determine the metal concentrations in cultured oysters from four coastal lagoons from SE Gulf of California, several individuals of Crassostrea gigas and C. corteziensis were collected and their cadmium, copper, lead and zinc levels were measured by atomic absorption spectrometry after acid digestion. The concentration of metals in oyster soft tissue was Zn [ Cu [ Cd [ Pb. In two lagoons, Cd concentrations (10.1-13.5 lg g -1 dw) exceeded the maximum level allowed according to the Official Mexican Standard (NOM-031-SSA1-1993), which is equivalent to the WHO recommended Cd levels in organisms used for human consumption.
Chemosphere, 2017
The Pacific oyster is one of the world's most widespread bivalves and a suitable species for biomonitoring trace elements in marine environments thanks to its bioaccumulation ability. As it is also an edible mollusc, concentrations of harmful elements in its tissues must be monitored. For these purposes, 464 wild individuals were collected from 12 sites along the Italian coasts. The concentration of fourteen trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Tl, and Zn) in their tissues was quantified. Among the three heavy metals, cadmium, lead, and mercury, none exceeded the maximum limit for in food set by European Union regulations but Cd in one sample from the Varano Lagoon resulted extremely close to this value. Contamination by Hg of the northern Adriatic and Orbetello Lagoons was also observed. Moreover, there was a positive association between the lagoon's environmental conditions and the bioaccumulation of this element in oysters. Despite the ban instituted 15 years ago on the use of Sn in antifouling paints, this element is still present in several marine environments, as demonstrated in the oysters sampled from harbour areas. Samples collected from harbours also showed very high concentrations of Cu and Zn due to the ability of oysters to accumulate these elements, which have replaced Sn in antifouling paints. Analysis of the samples from most sites indicated a low risk of human exposure to harmful elements through oyster consumption; nonetheless, chemical sanitary controls should focus primarily on Cd, Cu, and Zn.