Calibration and empirical Bayes variable selection (original) (raw)

A hierarchical bayes approach to variable selection for generalized linear models

2004

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to other criteria such as AIC and BIC on normal, logistic and Poisson regression model classes. A Fully Bayes criterion based on a restricted region hyperprior seems to be the most promising.

Empirical Bayes vs. fully Bayes variable selection

Journal of Statistical Planning and Inference, 2008

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, C p , BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical Bayes variable selection. Biometrika 87(4), 731-747] to improve on these fixed selection criteria. In this paper, we study the potential of alternative fully Bayes methods, which instead margin out the hyperparameters with respect to prior distributions. Several structured prior formulations are considered for which fully Bayes selection and estimation methods are obtained. Analytical and simulation comparisons with empirical Bayes counterparts are studied.

Adaptive Bayesian criteria in variable selection for generalized linear models

2007

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to other criteria such as AIC and BIC on normal, logistic and Poisson regression model classes. A Fully Bayes criterion based on a restricted region hyperprior seems to be the most promising. Finally, our criteria are illustrated and compared with competitors on a data example.

Efficient Empirical Bayes Variable Selection and Estimation in Linear Models

Journal of the American Statistical Association, 2005

We propose an empirical Bayes method for variable selection and coefficient estimation in linear regression models. The method is based on a particular hierarchical Bayes formulation, and the empirical Bayes estimator is shown to be closely related to the LASSO estimator. Such a connection allows us to take advantage of the recently developed quick LASSO algorithm to compute the empirical Bayes estimate, and provides a new way to select the tuning parameter in the LASSO method. Unlike previous empirical Bayes variable selection methods, which in most practical situations can be implemented only through a greedy stepwise algorithm, our method gives a global solution efficiently. Simulations and real examples show that the proposed method is very competitive in terms of variable selection, estimation accuracy, and computation speed compared with other variable selection and estimation methods.

Comparison of Bayesian objective procedures for variable selection in linear regression

TEST, 2008

In the objective Bayesian approach to variable selection in regression a crucial point is the encompassing of the underlying nonnested linear models. Once the models have been encompassed one can define objective priors for the multiple testing problem involved in the variable selection problem. There are two natural ways of encompassing: one way is to encompass all models into the model containing all possible regressors, and the other one is to encompass the model containing the intercept only into any other. In this paper we compare the variable selection procedures that result from each of the two mentioned ways of encompassing by analysing their theoretical properties and their behavior in simulated and real data. Relations with frequentist criteria for model selection such as those based on the R 2 adj , and Mallows C p are provided incidentally.

Posterior Model Consistency in Variable Selection as the Model Dimension Grows

Statistical Science, 2015

Most of the consistency analyses of Bayesian procedures for variable selection in regression refer to pairwise consistency, that is, consistency of Bayes factors. However, variable selection in regression is carried out in a given class of regression models where a natural variable selector is the posterior probability of the models. In this paper we analyze the consistency of the posterior model probabilities when the number of potential regressors grows as the sample size grows. The novelty in the posterior model consistency is that it depends not only on the priors for the model parameters through the Bayes factor, but also on the model priors, so that it is a useful tool for choosing priors for both models and model parameters. We have found that some classes of priors typically used in variable selection yield posterior model inconsistency, while mixtures of these priors improve this undesirable behavior. For moderate sample sizes, we evaluate Bayesian pairwise variable selection procedures by comparing their frequentist Type I and II error probabilities. This provides valuable information to discriminate between the priors for the model parameters commonly used for variable selection.

A novel Bayesian approach for variable selection in linear regression models

Computational Statistics & Data Analysis

We propose a novel Bayesian approach to the problem of variable selection in multiple linear regression models. In particular, we present a hierarchical setting which allows for direct specification of a-priori beliefs about the number of nonzero regression coefficients as well as a specification of beliefs that given coefficients are nonzero. To guarantee numerical stability, we adopt a g-prior with an additional ridge parameter for the unknown regression coefficients. In order to simulate from the joint posterior distribution an intelligent random walk Metropolis-Hastings algorithm which is able to switch between different models is proposed. Testing our algorithm on real and simulated data illustrates that it performs at least on par and often even better than other well-established methods. Finally, we prove that under some nominal assumptions, the presented approach is consistent in terms of model selection.

Criteria for Bayesian model choice with application to variable selection

The Annals of Statistics, 2012

In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.

On consistency of Bayesian variable selection procedures

2012

In this paper we extend the pairwise consistency of the Bayesian procedure to the entire class of linear models when the number of regressors grows as thesample size grows, and it is seen that for establishing consistency both the prior overthe model parameters and the prior over the models play now an important role. Wewill show that commonly used Bayesian procedures with non–fully Bayes priors formodels and for model parameters are inconsistent, and that fully Bayes versions ofthese priors correct this undesirable behavior.

Consistency of Bayesian procedures for variable selection

2009

It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and show that for a wide class of prior distributions, including intrinsic priors, the corresponding Bayesian procedure for variable selection in normal regression is consistent in the entire class of normal linear models. We find that the asymptotics of the Bayes factors for intrinsic priors are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the Jeffreys--Lindley paradox refers to the well-known fact that a point null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity. This implies that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors are limits of proper prior distributions, and for finite sample sizes they have been proved to behave extremely well for variable selection in regression; a consequence of our results is that for intrinsic priors Lindley's paradox does not arise.