Biomimetic Control Algorithm for the Balance and Locomotion of Walking Systems (original) (raw)
2010, Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics
Implementation of active control has much potential to contribute to the creation and construction of innovative structures. This paper summarizes recent research of the authors that is the study of biomimetic control solutions regarding balance and locomotion of robotic systems. A first goal of the work consists in identifying solutions necessary to balance the individual systems. Research has been focused both on systems with a single foot, but also on biped, tripods, quadrupeds, hexapods and octopods. Static balance is achieved by a proper mechanical design (Bizdoaca and Petrisor, 2009), but also by a corresponding load / tensioning actuators systems that can compensate for inertial elements that can lead to system stability limit. Theoretical studies have been focused on developing an efficient stepping algorithm in environment with strong uncertainties, known as SSTA algorithm. The article present a series of experiments made with servo actuated and smart actuated (based on shape memory alloy, especially) walking biomimetic structures.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.