Role of Transient Receptor Potential and Acid-sensing Ion Channels in Peripheral Inflammatory Pain (original) (raw)
2010, Anesthesiology
Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.
Related papers
Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception
AJP: Cell Physiology, 2011
Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca2+-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas satur...
The Journal of neuroscience : the official journal of the Society for Neuroscience, 2001
Nonsteroid anti-inflammatory drugs (NSAIDs) are major drugs against inflammation and pain. They are well known inhibitors of cyclooxygenases (COXs). However, many studies indicate that they may also act on other targets. Acidosis is observed in inflammatory conditions such as chronic joint inflammation, in tumors and after ischemia, and greatly contributes to pain and hyperalgesia. Administration of NSAIDs reduces low-pH-induced pain. The acid sensitivity of nociceptors is associated with activation of H(+)-gated ion channels. Several of these, cloned recently, correspond to the acid-sensing ion channels (ASICs) and others to the vanilloid receptor family. This paper shows (1) that ASIC mRNAs are present in many small sensory neurons along with substance P and isolectin B4 and that, in case of inflammation, ASIC1a appears in some larger Abeta fibers, (2) that NSAIDs prevent the large increase of ASIC expression in sensory neurons induced by inflammation, and (3) that NSAIDs such as ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.