Insects as source of angiotensin converting enzyme inhibitory peptides (original) (raw)
Related papers
ACE Inhibitory Peptides Derived from Enzymatic Hydrolysates of Animal Muscle Protein: A Review
Journal of Agricultural and Food Chemistry, 2005
Naturally occurring ACE (angiotensin converting enzyme) inhibitory peptides have a potential as antihypertensive components in functional foods or nutraceuticals. These peptides have been discovered in various food sources from plant and animal protein origin. In this paper an overview is presented of the ACE inhibitory peptides obtained by enzymatic hydrolysis of muscle protein of meat, fish, and invertebrates. Some of these peptides do not only show in vitro ACE inhibitory activity but also in vivo antihypertensive activity in spontaneously hypertensive rats. To focus on new sources of ACE inhibitory peptides, more specifically insects and other invertebrates, we compared the vertebrate and invertebrate musculature and analyzed phylogenetic relationships.
Nutrition Research, 2004
Angiotensin I-converting enzyme (ACE) catalyzes the conversion of angiotensin I to vasoconstrictor angiotensin II, and also inactivates the antihypertensive vasodilator bradykinin. Inhibition of ACE mainly results in an overall antihypertensive effect. Peptides derived from food proteins can have ACE inhibiting properties. This article reviews the ACE inhibitory peptides derived from different food proteins. Some of the ACE inhibitory peptides exhibit significant antihypertensive effects. However, the inhibitory potencies of these peptides on ACE activity do not always correlate with their antihypertensive activities. Some peptides with high inhibitory activity on this enzyme in vitro have no blood pressure lowering effects, whereas some peptides with low inhibitory activity on this enzyme in vitro have such effects. The possible mechanisms for this conflicting phenomenon between inhibitory activity and antihypertensive effect, the structure-activity relationships, and the potential use prospect of these peptides in the development of a novel functional food for preventing hypertension as well as therapeutic purposes, are also discussed.
Current Pharmaceutical Design, 2009
The existence of endogenous bioactive protein or peptide with angiotensin-converting enzyme (ACE) inhibitory activity in snakehead fish fillet is promising to be investigated. The purposes of this research were to extract ACE inhibitory endogenous protein or peptide from snakehead fish fillet and to fractionate the active compounds using ultrafiltration. The extraction employed two solvents, i.e. aquadest and 50% ethanol. Fractionation was conducted using ultrafiltration membranes of 10,000; 5,000 and 3,000 Molecular W eight Cut Off (MW CO) to separate the protein or peptide into the sizes of >10 kDa, 5-10 kDa, 3-5 kDa and <3 kDa. The parameters observed were protein and peptide content, ACE inhibitory activity (in vitro) and also protein and peptide profiles. The result revealed that the snakehead fish fillet contained ACE inhibitory endogenous bioactive protein or peptide. The 50% ethanol was more effective in extracting peptide of <10 kDa than the aquadest. Yet, the aquadest was better in extracting higher molecular weight protein of >10 kDa than the 50% ethanol. The fraction of <3 kDa by aquadest had the highest ACE inhibitor activity per g protein (7.85% inhibition of ACE per g protein). Thus, the fraction of <3 kDa aquadest is the most promising option for further research and development of natural anti-hypertension compound. From the result, snakehead fish fillet was potential to be utilized as a functional food as well as functional ingredient to fight hypertension.
European Journal of Biochemistry, 2002
Angiotensin converting enzyme (ACE) was already discovered in insects in 1994, but its physiological role is still enigmatic. We have addressed this problem by purifying four new ACE substrates from the ovaries of the grey fleshfly, Neobellieria bullata. Their primary structures were identified as NKLKPSQWISLSD (Neb-ODAIF-1 1)13 ), NKLKPSQWI (Neb-ODAIF-1 1)9 ), SLKPSNWLTPSE (Neb-ODAIF-2) and LEQIYHL. Database analysis showed significant homology with amino acid sequence stretches as present in the N-terminal part of several fly yolk proteins. An antiserum raised against Neb-ODAIF-1 1)9 immunostained one out of three yolk protein bands of SDS/PAGE-separated fly haemolymph and egg homogenate, thus confirming that these peptides originate from a yolk protein gene product. Kinetic analysis of these peptides and of the peptides Neb-ODAIF and Neb-ODAIF-1 1)7 with insect ACE and human ACE show both similar and unique properties for insect ACE as compared with human C-domain ACE.
Journal of Food Science, 2000
Angiotensin I-converting enzyme (ACE)-inhibitory peptides from the thermolysin digest of chicken muscle and the peptic digest of ovalbumin were isolated. However, some of them failed to show antihypertensive activity in spontaneously hypertensive rats (SHR). To clarify this discrepancy, ACE-inhibitory peptides from various sources were preincubated with ACE before measurement of ACE-inhibitory activity and classified into 3 groups: (1) inhibitor type, IC 50 values of peptides that are not affected after preincubation with ACE;( 2) substrate type, peptides that are hydrolyzed by ACE to give peptides with weaker activity; and (3) prodrug-type inhibitor, these peptides are converted to true inhibitors by ACE or gastrointestinal proteases. Peptides belonging to the 1st and the 3rd groups exert antihypertensive activities even after oral administration in SHR.
International Journal of Peptide Research and Therapeutics, 2020
Hypertension is declared as the major risk factor of cardiovascular diseases and stroke, and the leading cause of premature deaths. ACE is a zinc dependent dipeptidyl peptidase and plays key role in controlling blood pressure via renin angiotensin system (RAS), and hence serves as the promising target for antihypertension drugs. Many food derived antihypertensive peptides have been identified recently. However, their ACE inhibitory activity, interactions and stability are not fully evaluated. Our work focused on combination of modern bioinformatics techniques for efficient evaluation of potent ACE inhibitory food peptides and understanding of interactions between ACE and inhibitory peptides. We reported novel antihypertensive peptide IQDVPS, LQPGS, VIP from date, salmon and soybean proteins respectively. Food proteins were digested in-silico to release peptides. Molecular docking studies revealed high binding affinities and interactions with ACE active site. MD simulations and Alanine Scanning were carried out to study the stability of these ACE-peptide complexes in cell like environment. The results showed that the suggested peptides competitively inhibit ACE by tightly binding to its active site, meanwhile maintaining the structural stability of the complex. ACE-LQPGS (Salmon) was found to have best binding with least structural fluctuations.
Journal of Agricultural and Food Chemistry, 2007
In this study, we have identified novel antihypertensive peptides derived from egg-white proteins. The sequences YRGGLEPINF and ESIINF produced an acute blood-pressure-lowering effect in spontaneously hypertensive rats upon a single oral administration. Our results suggest that the antihypertensive action could be attributed to a vascular-relaxing mechanism that would occur in vivo independently of angiotensin I-converting enzyme (ACE) inhibition, because neither these peptides nor their main digestion fragments, except for the dipeptide YR, acted as ACE inhibitors in vitro. The vasodilator and antihypertensive activity of the sequences ESI and NF would explain the bloodpressure-lowering effect of ESIINF. With regard to YRGGLEPINF, in addition to NF, YR appeared as the main fragment responsible for its activity. The dipeptide YR, named kyotorphin and previously identified as an endogenous analgesic neuropeptide in the central nervous system, showed strong vasodilator and antihypertensive properties. The structure-activity features of the vasodilator peptides are discussed. DGSRQPV (ovotransferrin 230-236). The fragments resulting from the simulation of the gastrointestinal digestion of YRGGLEPINF and ESIINF (YRGGLEPI, YR, GGLEPI, ESI, and NF) were also synthesized. All of these peptides were obtained by conventional Fmoc solid-phase synthesis with a 431A peptide synthesizer (Applied Biosystem, Inc., Ü berlingen, Germany) according to the method described by Atherton and Sheppard (29). They were synthesized and provided by the Unitat de Pèptids of Barcelona University, and their purity (>90%) was verified in our laboratory by reversed-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC-MS/MS) (30). The drugs and the peptides were dissolved in distilled water for the reactivity experiments and administration to the rats.