Pelabelan Selimut Ajaib Super Pada Graf Lintasan (original) (raw)
Abstract
Let πΊ = (π, πΈ) be a simple graph. An edge covering of πΊ is a family of subgraphs π»1 , β¦ , π»π such that each edge of πΈ(πΊ) belongs to at least one of the subgraphs π»π , 1 β€ π β€ π. If every π»π is isomorphic to a given graph π», then the graph πΊ admits an π» β covering. Let πΊ be a containing a covering π», and π the bijectif function π: (π βͺ πΈ) β {1,2,3, β¦ , |π| + |πΈ|} is said an π» βmagic labeling of πΊ if for every subgraph π» β² = (π β² ,πΈ β² ) of πΊ isomorphic to π», is obtained that β π(π) + β π(πΈ) πβπΈ(π»β² π£βπ(π» ) β² ) is constant. πΊ is said to be π» βsuper magic if π(π) = {1, 2, 3, β¦ , |π|}. In this case, the graph πΊ which can be labeled with π»-magic is called the covering graph π» βmagic. The sum of all vertex labels and all edge labels on the covering π» β super magic then obtained constant magic is denoted by β π(π»). The duplication graph 2 of graph π·2 (πΊ) is a graph obtained from two copies of graph πΊ, called πΊ and πΊ β² , with connecting each respectively vertex π£ in πΊ with the vertexs immedia...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- Gambar 3 : Pelabelan Titik dan Sisi Selimut π· 2 (π 3 ) pada Graf π· 2 (π 6 ) pada Teorema 1 Gambar 4 : Pelabelan Titik dan Sisi Selimut π· 2 (π 3 ) pada Graf π· 2 (π 6 ) β² pada Teorema 2
- V. KESIMPULAN Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa duplikasi dari graf lintasan (π· 2 (π π )) memiliki pelabelan selimut ajaib super berbentuk π· 2 (π π ) untuk π β₯ 4 dan 3 β€ π β€ π -1 dengan konstanta ajaib untuk semua selimut adalah β π(π· 2 (π π ) (π
- = β π(π· 2 (π π ) (π +1) ).
- Baskoro, E, T, Miller, M, Slamin, dan Wallis, W, D, Mengenalkan Indonesia Melalui Teori Graf, Institut Teknologi Bandung 2007, Bandung.
- Cunningham, D,Vertex-magic, Electronic Journal of Undergraduate Mathematics 9, 2004, 1- 20.
- Gallian, A, J, A Dynamic Survey of Graph Labeling, U.S.A , University of Minnesota Duluth, 19, 2016, 150-153.
- GutiΞΉrrez, A., dan LladΟ A, Magic coverings, J, Combin, Math, Combin, Comput. 55 , 2005, 43-56.
- Jayanthi, P, Salvagopal, P, dan Sundaram, S, Soma, Some πΆ 3 -Supermagic Graphs, Until. Math, 89, 2012, 357-366.
- Jayanthi, P, dan Muthuraja, N, T, Some Cycle-Super Magic Graphs, Internat, J, Math, Soft Comput, 4(2), 2014, 173-144.
- Kotzig, A., and Rosa, A, Magic Valuations of finite Graphs, Canad, Math, Bull, 13, 1970, 451- 461.
- LladΟ, A., dan Moragas, J, Cycle-megic graphs, Discrete Math, 307 : 23, 2007, 2925-293.
- Maryati, T, K, Baskoro, E,T, dan Salman, A, N, M, π β -supermagic labelings of some trees, J, Combin, Math, Combin, Comput, 65, 2008, 197-207.
- Maryati, T, K, Salman, A, N, M, Baskoro, E, T, dan Irawati, On The Path-(super) Magicness of a Cycle With Some Pendants, Until Math, 96, 2015, 319-330.
- Ngurah, A, A, G, Salman, A, N, M, dan Susilowati, L, H-supermegic labelings of graphs, Discrete Math, 310 : 8, 2008, 1293-1300.
- Ngurah, A, A,G, Salman, A, N, M, dan Sudarsana, I, W, On supermagic coverings of fans and ladders, SUT Jurnal of Mathematics Vol. 46, No.1, 2010 ,67-78. Tokyo University of Science, Kagaruzaka, Sahinjuku-ku, Tokyo Japan.
- Roswitha, M, Baskoro, E, T., Maryati, T, K., Kurdhi, N, A., dan Susanti, I, Father Results on Cycle-Supermagic labeling, AKCE Int. J, Graphs Comb, 10(2), 2013, 211-220.
- Selvagopal, P, dan Jayanthi, P, On πΆ π -Supermagic Graphs, International Journal Mathematics and Scientific Computing, Sci, 3, 2008, 25-30.
- Vaidya, S, K, dan Shah, N, Some New Families of Prime Cordial Graphs, Journal of Mathematics Research, 3 (4), 2011, 1-10, Tersedia online: www.ccsenet.org/jmr.