A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography (original) (raw)
Nanomedicine: Nanotechnology, Biology and Medicine, 2015
Abstract
Effective drug delivery to tumors is a barrier to treatment with nanomedicines. Non-invasively tracking liposome biodistribution and tumor deposition in patients may provide insight into identifying patients that are well-suited for liposomal therapies. We describe a novel gradient-loadable chelator, 4-DEAP-ATSC, for incorporating (64)Cu into liposomal therapeutics for positron emission tomographic (PET). (64)Cu chelated to 4-DEAP-ATSC (>94%) was loaded into PEGylated liposomal doxorubicin (PLD) and HER2-targeted PLD (MM-302) with efficiencies >90%. (64)Cu-MM-302 was stable in human plasma for at least 48h. PET/CT imaging of xenografts injected with (64)Cu-MM-302 revealed biodistribution profiles that were quantitatively consistent with tissue-based analysis, and tumor (64)Cu positively correlated with liposomal drug deposition. This loading technique transforms liposomal therapeutics into theranostics and is currently being applied in a clinical trial (NCT01304797) to non-invasively quantify MM-302 tumor deposition, and evaluate its potential as a prognostic tool for predicting treatment outcome of nanomedicines. This study describes a PET-based detection method utilizing in vivo localization of 64Cu-labeled liposomes. In addition to the presented rodent model, a clinical trial is already underway to investigate the clinical utility of this technique.
Jinzi Zheng hasn't uploaded this paper.
Let Jinzi know you want this paper to be uploaded.
Ask for this paper to be uploaded.