Two Novel Computational Techniques for Solving Nonlinear Time-Fractional Lax’s Korteweg-de Vries Equation (original) (raw)

Solutions of time-fractional third- and fifth-order Korteweg–de-Vries equations using homotopy perturbation transform method

Engineering Computations, 2019

Purpose This study aims to find the solution of time-fractional Korteweg–de-Vries (tfKdV) equations which may be used for modeling various wave phenomena using homotopy perturbation transform method (HPTM). Design/methodology/approach HPTM, which consists of mainly two parts, the first part is the application of Laplace transform to the differential equation and the second part is finding the convergent series-type solution using homotopy perturbation method (HPM), based on He’s polynomials. Findings The study obtained the solution of tfKdV equations. An existing result “as the fractional order of KdV equation given in the first example decreases the wave bifurcates into two peaks” is confirmed with present results by HPTM. A worth mentioning point may be noted from the results is that the number of terms required for acquiring the convergent solution may not be the same for different time-fractional orders. Originality/value Although third-order tfKdV and mKdV equations have alread...

The Time-Fractional Coupled-Korteweg-de-Vries Equations

Abstract and Applied Analysis, 2013

We put into practice a relatively new analytical technique, the homotopy decomposition method, for solving the nonlinear fractional coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method (HAM), and homotopy perturbation method (HPM).

A Novel Analytical View of Time-Fractional Korteweg-De Vries Equations via a New Integral Transform

Symmetry

We put into practice relatively new analytical techniques, the Shehu decomposition method and the Shehu iterative transform method, for solving the nonlinear fractional coupled Korteweg-de Vries (KdV) equation. The KdV equation has been developed to represent a broad spectrum of physics behaviors of the evolution and association of nonlinear waves. Approximate-analytical solutions are presented in the form of a series with simple and straightforward components, and some aspects show an appropriate dependence on the values of the fractional-order derivatives that are, in a certain sense, symmetric. The fractional derivative is proposed in the Caputo sense. The uniqueness and convergence analysis is carried out. To comprehend the analytical procedure of both methods, three test examples are provided for the analytical results of the time-fractional KdV equation. Additionally, the efficiency of the mentioned procedures and the reduction in calculations provide broader applicability. It...

Novel Analysis of Fractional-Order Fifth-Order Korteweg-de Vries Equations

In this paper, the ρ-homotopy perturbation transformation method was applied to analysis of fth-order nonlinear fractional Korteweg-de Vries (KdV) equations. is technique is the mixture form of the ρ-Laplace transformation with the homotopy perturbation method. e purpose of this study is to demonstrate the validity and e ciency of this method. Furthermore, it is demonstrated that the fractional and integer-order solutions close in on the exact result. e suggested technique was e ectively utilized and was accurate and simple to use for a number of related engineering and science models.

Modified homotopy perturbation method and its application to analytical solitons of fractional-order Korteweg–de Vries equation

Beni-Suef University Journal of Basic and Applied Sciences

Background Experimentally brought to light by Russell and hypothetically explained by Korteweg–de Vries, the KDV equation has drawn the attention of several mathematicians and physicists because of its extreme substantial structure in describing nonlinear evolution equations governing the propagation of weakly dispersive and nonlinear waves. Due to the prevalent nature and application of solitary waves in nonlinear dynamics, we discuss the soliton solution and application of the fractional-order Korteweg–de Vries (KDV) equation using a new analytical approach named the “Modified initial guess homotopy perturbation.” Results We established the proposed technique by coupling a power series function of arbitrary order with the renown homotopy perturbation method. The convergence of the method is proved using the Banach fixed point theorem. The methodology was demonstrated with a generalized KDV equation, and we applied it to solve linear and nonlinear fractional-order Korteweg–de Vries...

New Soliton Solutions of Time-Fractional Korteweg–de Vries Systems

Universe

Model construction for different physical situations, and developing their solutions, are the major characteristics of the scientific work in physics and engineering. Korteweg–de Vries (KdV) models are very important due to their ability to capture different physical situations such as thin film flows and waves on shallow water surfaces. In this work, a new approach for predicting and analyzing nonlinear time-fractional coupled KdV systems is proposed based on Laplace transform and homotopy perturbation along with Caputo fractional derivatives. This algorithm provides a convergent series solution by applying simple steps through symbolic computations. The efficiency of the proposed algorithm is tested against different nonlinear time-fractional KdV systems, including dispersive long wave and generalized Hirota–Satsuma KdV systems. For validity purposes, the obtained results are compared with the existing solutions from the literature. The convergence of the proposed algorithm over t...

Analytical Investigation of Fractional-Order Korteweg–De-Vries-Type Equations under Atangana–Baleanu–Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid

Symmetry

This article applies the homotopy perturbation transform technique to analyze fractional-order nonlinear fifth-order Korteweg–de-Vries-type (KdV-type)/Kawahara-type equations. This method combines the Zain Ul Abadin Zafar-transform (ZZ-T) and the homotopy perturbation technique (HPT) to show the validation and efficiency of this technique to investigate three examples. It is also shown that the fractional and integer-order solutions have closed contact with the exact result. The suggested technique is found to be reliable, efficient, and straightforward to use for many related models of engineering and several branches of science, such as modeling nonlinear waves in different plasma models.

Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform

Fractal and Fractional

The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical ou...

Analysis of a time fractional wave-like equation with the homotopy analysis method

Physics Letters A, 2008

The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, whenh f =h g = −1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus.