Trypanosoma cruzi and its components as exogenous mediators of inflammation recognized through Toll-like receptors (original) (raw)

The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan

Future Microbiology, 2011

Trypanosoma cruzi, the causal agent of Chagas disease, is an intracellular protozoan parasite that predominantly invades macrophages and cardiomyocytes, leading to persistent infection. Several members of the Toll-like receptor family are crucial for innate immunity to infection and are involved in maintaining tissue homeostasis. This review focuses on recent experimental findings of the innate and adaptive immune response in controlling the parasite and/or in generating heart and liver tissue injury. We also describe the importance of the host’s genetic background in the outcome of the disease and emphasize the importance of studying the response to specific parasite antigens. Understanding the dual participation of the immune response may contribute to the design of new therapies for Chagas disease.

Impaired Production of Proinflammatory Cytokines and Host Resistance to Acute Infection with Trypanosoma cruzi in Mice Lacking Functional Myeloid Differentiation Factor 88

The Journal of Immunology, 2004

Here, we evaluated the impact of TLR2 and myeloid differentiation factor 88 (MyD88) deficiencies in host resistance to infection with T. cruzi. Our results show that macrophages derived from TLR2 ؊/؊ and MyD88 ؊/؊ mice are less responsive to GPI-mucin derived from T. cruzi trypomastigotes and parasites. In contrast, the same cells from TLR2 ؊/؊ still produce TNF-␣, IL-12, and reactive nitrogen intermediates (RNI) upon exposure to live T. cruzi trypomastigotes. Consistently, we show that TLR2 ؊/؊ mice mount a robust proinflammatory cytokine response as well as RNI production during the acute phase of infection with T. cruzi parasites. Further, deletion of the functional TLR2 gene had no major impact on parasitemia nor on mortality. In contrast, the MyD88 ؊/؊ mice had a diminished cytokine response and RNI production upon acute infection with T. cruzi. More importantly, we show that MyD88 ؊/؊ mice are more susceptible to infection with T. cruzi as indicated by the higher parasitemia and accelerated mortality, as compared with the wild-type mice. Together, our results indicate that T. cruzi parasites elicit an alternative inflammatory pathway independent of TLR2. This pathway is partially dependent on MyD88 and necessary for mounting optimal inflammatory and RNI responses that control T. cruzi replication during the early stages of infection.

Impaired innate immunity in Tlr4(-/-) mice but preserved CD8+ T cell responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-deficient mice

PLoS pathogens, 2010

The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-gamma secreting CD8+ T cells specific for H-2K(b)-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2(-/-), Tlr4(-/-), Tlr9(-/) (-) or Myd88(-/-) mice generated both specific cytotoxic responses and IFN-gamma secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-gamma+CD4+ cells ...

The Immune Response toTrypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development

Journal of Parasitology Research, 2012

In the past ten years, studies have shown the recognition ofTrypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses toT. cruziinfection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).

Immunisation with a major Trypanosoma cruzi antigen promotes pro-inflammatory cytokines, nitric oxide production and increases TLR2 expression

International Journal for Parasitology, 2007

Innate and adaptive immunity collaborate in the protection of intracellular pathogens including Trypanosoma cruzi infection. However, the parasite molecules that regulate the host immune response have not been fully identified. We previously demonstrated that the immunisation of C57BL/6 mice with cruzipain, an immunogenic T. cruzi glycoprotein, induced a strong specific T-cell response. In this study, we demonstrated that active immunisation with cruzipain was able to stimulate nitric oxide (NO) production by splenocytes. Immune cells also showed increased inducible nitric oxide synthase protein and mRNA expression. Spleen adherent cells secreted high levels of IFN-c and IL-12. Microbicidal activity in vitro was mainly mediated by reactive nitrogen intermediaries and IFN-c, as demonstrated by the inhibitory effects of NO synthase inhibitor or by IFN-c neutralisation. Specific T-cells were essential for NO, IFN-c and TNF-a production. Furthermore, we reported that cruzipain enhanced CD80 and major histocompatibility complex-II molecule surface expression on F4/80+ spleen cells. Interestingly, we also showed that cruzipain up-regulated toll like receptor-2 expression, not only in F4/80+ but also in total spleen cells which may be involved in the effector immune response. Our findings suggest that a single parasite antigen such as cruzipain, through adaptive immune cells and cytokines, can modulate the macrophage response not only as antigen presenting cells, but also as effector cells displaying enhanced microbicidal activity with reactive nitrogen intermediary participation. This may represent a mechanism that contributes to the immunoregulatory process during Chagas disease. Ó

The Trypanosoma cruzi Tc52-Released Protein Induces Human Dendritic Cell Maturation, Signals Via Toll-Like Receptor 2, and Confers Protection Against Lethal Infection

The Journal of Immunology, 2002

The intracellular protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas disease. We have recently identified a T. cruzi-released protein related to thiol-disulfide oxidoreductase family, called Tc52, which is crucial for parasite survival and virulence. In vitro, Tc52 in combination with IFN-γ activates human macrophages. In vivo, active immunization with Tc52 relieves the immunosuppression associated to acute infection and elicits a specific immune response. As dendritic cells (DC) have a central role in the initiation of immune responses, we investigated whether Tc52 may modulate DC activity. We show that Tc52 induces human DC maturation. Tc52-treated immature DC acquire CD83 and CD86 expression, produce inflammatory chemokines (IL-8, monocyte chemoattractant protein-1, and macrophage-inflammatory protein-1α), and present potent costimulatory properties. Tc52 binds to DC by a mechanism with the characteristics of a saturable receptor system and signals via Toll-l...

Nonimmune Cells Contribute to Crosstalk between Immune Cells and Inflammatory Mediators in the Innate Response to Trypanosoma cruzi Infection

2012

Chagas myocarditis, which is caused by infection with the intracellular parasite Trypanosoma cruzi, remains the major infectious heart disease worldwide. Innate recognition through toll-like receptors (TLRs) on immune cells has not only been revealed to be critical for defense against T. cruzi but has also been involved in triggering the pathology. Subsequent studies revealed that this parasite activates nucleotide-binding oligomerization domain-(NOD-)like receptors and several particular transcription factors in TLR-independent manner. In addition to professional immune cells, T. cruzi infects and resides in different parenchyma cells. The innate receptors in nonimmune target tissues could also have an impact on host response. Thus, the outcome of the myocarditis or the inflamed liver relies on an intricate network of inflammatory mediators and signals given by immune and nonimmune cells. In this paper, we discuss the evidence of innate immunity to the parasite developed by the host, with emphasis on the crosstalk between immune and nonimmune cell responses.

The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease

Expert Reviews in Molecular Medicine, 2010

Infection with the protozoan parasite Trypanosoma cruzi, the agent of Chagas disease, is characterised by a variable clinical course – from symptomless cases to severe chronic disease with cardiac and/or gastrointestinal involvement. The variability in disease outcome has been attributed to host responses as well as parasite heterogeneity. In this article, we review studies indicating the importance of immune responses as key determinants of host resistance to T. cruzi infection and the pathogenesis of Chagas disease. Particular attention is given to recent studies defining the role of cognate innate immune receptors and immunodominant CD8+ T cells that recognise parasite components – both crucial for host–parasite interaction and disease outcome. In light of these studies we speculate about parasite strategies that induce a strong and long-lasting T-cell-mediated immunity but at the same time allow persistence of the parasite in the vertebrate host. We also discuss what we have lea...