Depth dependent azimuthal anisotropy in the western US upper mantle (original) (raw)
Related papers
Western U.S. seismic anisotropy revealing complex mantle dynamics
Earth and Planetary Science Letters, 2018
The origin of the complex pattern of SKS splitting over the western United States (U.S.) remains a long-lasting debate, where a model that simultaneously matches the various SKS features is still lacking. Here we present a series of quantitative geodynamic models with data assimilation that systematically evaluate the influence of different lithospheric and mantle structures on mantle flow and seismic anisotropy. These tests reveal a configuration of mantle deformation more complex than ever envisioned before. In particular, we find that both lithospheric thickness variations and toroidal flows around the Juan de Fuca slab modulate flow locally, but their coexistence enhances large-scale mantle deformation below the western U.S. The ancient Farallon slab below the east coast pulls the western U.S. upper mantle eastward, spanning the regionally extensive circular pattern of SKS splitting. The prominent E-W oriented anisotropy pattern within the Pacific Northwest reflects the 2 existence of sustaining eastward intrusion of the hot Pacific oceanic mantle to beneath the continental interior, from within slab tears below Oregon to under the Snake River Plain and the Yellowstone caldera. This work provides an independent support to the formation of intra-plate volcanism due to intruding shallow hot mantle instead of a rising mantle plume.
Seismic azimuthal anisotropy beneath the eastern United States and its geodynamic implications
Geophysical Research Letters, 2017
Systematic spatial variations of anisotropic characteristics are revealed beneath the eastern U.S. using seismic data recorded between 1988 and 2016 by 785 stations. The resulting fast polarization orientations of the 5613 measurements are generally subparallel to the absolute plate motion (APM) and are inconsistent with the strike of major tectonic features. This inconsistency, together with the results of depth estimation using the spatial coherency of the splitting parameters, suggests a mostly asthenospheric origin of the observed azimuthal anisotropy. The observations can be explained by a combined effect of APM-induced mantle fabric and a flow system deflected horizontally around the edges of the keel of the North American continent. Beneath the southern and northeastern portions of the study area, the E-W keel-deflected flow enhances APM-induced fabric and produces mostly E-W fast orientations with large splitting times, while beneath the southeastern U.S., anisotropy from the N-S oriented flow is weakened by the APM.
Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States
Nature Geoscience, 2011
The orientation and depth of deformation in the Earth is characterized by seismic anisotropy 1 -variations in the speed of passing waves caused by the alignment of minerals under strain into a preferred orientation. Seismic anisotropy in the western US has been well studied 2-11 and anisotropy in the asthenosphere is thought to be controlled by plate motions and subduction 6-9 . However, anisotropy within the crust and upper mantle and the variation of anisotropy with depth are poorly constrained. Here, we present a three-dimensional model of crustal and upper mantle anisotropy based on new observations of ambient noise 12 and earthquake 13 data that reconciles surface wave and body wave 9 data sets. We confirm that anisotropy in the asthenosphere reflects a mantle flow field controlled by a combination of North American plate motion and the subduction of the Juan de Fuca and Farallon slab systems 6-9 . We also find that seismic anisotropy in the upper mantle and crust are largely uncorrelated: patterns of anisotropy in the crust correlate with geological provinces, whereas anisotropy in the upper mantle is controlled by temperature variations. We conclude that any coupling between anisotropy in the crust and mantle must be extremely complex and variable.
Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States
Physics of the Earth and Planetary Interiors, 2013
Much progress has been made on revealing seismic structure and mantle dynamics beneath the United States (US) with the EarthScope/USArray project. Seismic anisotropy revealed by shear-wave splitting studies provides important constraints on constructing geodynamic models with regard to the seismic images, but the shear-wave splitting observations have poor vertical resolution and so their interpretations are often not unique. In this work we used a large number of arrival-time data from local and distant earthquakes recorded by the USArray to determine the first P-wave azimuthal anisotropy tomography of the crust and upper mantle beneath the US. Our results show that fast velocity directions (FVDs) in the lithosphere under the tectonically active areas correlate well with the surface tectonic features, suggesting that the P-wave anisotropy mainly reflects the present deformation. A circular pattern of the FVDs centered in the Great Basin is revealed, which is well consistent with the specific circular shear-wave splitting observations there, suggesting that the anisotropy occurs in the crust and uppermost mantle. In contrast, beneath the stable cratonic region, the FVDs revealed by this study differ from the shear-wave splitting observations but consistent with the features of gravity and magnetic anomalies, indicating that the P-wave FVDs mainly reflect the fossil anisotropy in the lithosphere, whereas the Swave splitting observations mainly reflect the significant anisotropy in the asthenosphere. The present results shed new light on the seismic anisotropy in the crust and upper mantle and provide new constraints on constructing geodynamic models beneath the US.
Variable Azimuthal Anisotropy in Earth's Lowermost Mantle
Science, 2004
A persistent reversal in the expected polarity of the initiation of vertically polarized shear waves that graze the Dµ layer (the layer at the boundary between the outer core and the lower mantle of Earth) in some regions starts at the arrival time of horizontally polarized shear waves. Full waveform modeling of the split shear waves for paths beneath the Caribbean requires azimuthal anisotropy at the base of the mantle. Models with laterally coherent patterns of transverse isotropy with the hexagonal symmetry axis of the mineral phases tilted from the vertical by as much as 20-are consistent with the data. Small-scale convection cells within the mantle above the Dµ layer may cause the observed variations by inducing laterally variable crystallographic or shapepreferred orientation in minerals in the Dµ layer.
Geophysical Journal International, 2011
Using a combination of long period seismic waveforms and SKS splitting measurements, we have developed a 3-D upper-mantle model (SAWum_NA2) of North America that includes isotropic shear velocity, with a lateral resolution of ∼250 km, as well as radial and azimuthal anisotropy, with a lateral resolution of ∼500 km. Combining these results, we infer several key features of lithosphere and asthenosphere structure.
Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States
Physics of the earth and planetary interiors, 1993
We have examined shear-wave splitting in teleseismic shear waves (SKS, SKKS, S) from 15 stations in the western United States, based on analysis of 123 records from 67 events . The varied past and present tectonic styles in this region (subduction, transform faulting, extension, and stable domains) are expected to cause a wide variety of anisotropic behavior and therefore make it an excellent natural laboratory. Fast polarization azimuths (0) vary from E-W to nearly N-S and time delays (St) range from being barely detectable (less than 0 .6 s) to 1 .6 s . Most stations yielded consistent measurements independant of station-event geometry . The exceptions were stations situated very close to the San Andreas Fault, which yielded well-constrained but inconsistent splitting parameters . These have been successfully modeled by two anisotropic layers with different horizontal symmetry axes. The upper layer has a fast direction parallel to the fault and St of about 1 s . The lower layer, with St from 0.6 to 0.9 s, is oriented E-W near the San Francisco Bay Area and NE-SW in the Mojave Desert. Other measurements of E-W fast 46 are observed as far east as western Nevada, with large delay times of 1 .3-1 .5 s, but disappear to the north . Stations in the northwestern Basin and Range have values of 0 oriented at about + 70°with delay times ranging from 0.7 to 1 .2 s. 0 varies in other regions of the Basin and Range, from -70°in eastern Nevada to +20°in the transition zone between the Colorado Plateau and the Basin and Range, with St of 1 .0 s.
Geophysical Journal International, 2007
Seismic anisotropy provides insight into palaeo and recent deformation processes and, therefore, mantle dynamics. In a first step towards a model for the North American upper mantle with anisotropy characterized by a symmetry axis of arbitrary orientation, aimed at filling the gap between global tomography and SKS splitting studies, we inverted long period waveform data simultaneously for perturbations in the isotropic S-velocity structure and the anisotropic parameter , in the framework of normal mode asymptotic coupling theory (NACT). The resulting 2-D broad-band sensitivity kernels allow us to exploit the information contained in long period seismograms for fundamental and higher mode surface waves at the same time. To ensure high quality of the retrieved regional upper-mantle structure, accurate crustal corrections are essential. Here, we follow an approach which goes beyond the linear perturbation approximation and split the correction into a linear and non-linear part. The inverted data set consists of more than 40 000 high quality three component fundamental and overtone surface waveforms, recorded at broad-band seismic stations in North America from teleseismic events and provides a fairly homogeneous path and azimuthal coverage. The isotropic part of our tomographic model shares the large-scale features of previous regional studies for North America. We confirm the pronounced difference in the isotropic velocity structure between the western active tectonic region and the central/eastern stable shield, as well as the presence of subducted material (Juan de Fuca and Farallon Plate) at transition zone depths. The new regional 3-D radial anisotropic model indicates the presence of two distinct anisotropic layers beneath the cratonic part of the North American continent: a deep asthenospheric layer, consistent with present day mantle flow, and a shallower lithospheric layer, possibly a record of ancient tectonic events.
2008
Keywords: seismic anisotropy surface wave stratified anisotropy shear-wave anisotropy lithospheric deformation Evolution of continental lithosphere during orogenies and the following periods of relative stability is poorly understood, largely because of the lack of relevant observational constraints. Measurements of seismic anisotropy provide such constraints, but due to limitations in the resolving power of available data sets and, more generally, of various data types, detailed mapping of lithospheric anisotropy has remained elusive. Here we apply surface-wave array analysis to data from the East-central U.S. and determine the layering of azimuthal anisotropy beneath the Grenville-Appalachian orogen in the entire lithosphere-asthenosphere depth range. Combined measurements of Rayleigh-wave phase velocities along 60 interstation paths constrain phasevelocity maps with statistically significant anisotropy. Distinct anisotropy patterns in three different period ranges point to the existence of three distinct layers beneath the orogen, with different anisotropic fabric within each. We invert phase-velocity maps and, alternatively, pairs of selected measured dispersion curves for anisotropic shear-velocity structure. The results confirm that three anisotropic layers with different fabric within each are present, two in the lithosphere (30-70 km; 70-150 km depths) and another in the asthenosphere beneath (N150 km). Directions of fast wave propagation in the upper lithosphere are parallel to the Grenville and Appalachian fronts, suggesting that the region-scale anisotropy pattern reflects the pervasive deformation of the lower crust and uppermost mantle during the continental collisions. The fast-propagation azimuth within the lower lithosphere is different, parallel to the NNW direction of North America's motion after the orogeny (~160-125 Ma). This suggests that the lithosphere, 70-km thick by the end of the Appalachian orogeny, gradually thickened to the present 150-km while inheriting the fabric from the sheared asthenosphere below, as the plate moved NNW. Below 150 km, the fast-propagation direction is parallel to the present plate motion, indicating fabric due to recent asthenospheric flow. Anisotropy in narrower depth ranges beneath the region has been sampled previously. Published results (from observations of P n and SKS and waveform tomography) can be accounted for and reconciled by the three-layered model of anisotropy for the lithosphere-asthenosphere depth range constrained in this study. In particular, the anisotropy we detect in the asthenosphere can account for the magnitude of SKS-wave splitting, with the fast wave-propagation directions inferred from SKS and surface-wave data also consistent, both parallel to the current plate motion.
Geochemistry, Geophysics, Geosystems, 2013
Inferring the circulation of the mantle around subducting plates from surface measurements of shear wave splitting patterns remains to date elusive. To assist the interpretation of the seismic signal and its relation with the mantle circulation pattern, we present a new methodology to compute the seismic anisotropy directly from the flow in the upper mantle of 3-D numerical models of Earth-like subduction. This computational strategy accounts for the non-steady-state evolution of subduction zones yielding mantle fabrics that are more consistent with the deformation history than previously considered. In the subduction models, a strong mantle fabric develops throughout the upper mantle with a magnitude of the anisotropy that is proportional to the amount of subduction and is independent of the subduction rate. The sub-slab upper mantle is characterized by two domains with different fabrics: at shallow depth, the mantle entrained with the subducting slab develops trench-perpendicular directed anisotropy due to simple shear deformation, while in the deeper mantle, slab rollback induces pure shear deformation causing trench-parallel extension and fast seismic directions. Subducting plate advance favors the development of the fabric in the entrained mantle domain, while slab retreat increases the trench-parallel anisotropy in the deeper upper mantle. In the deeper domain, the strength of the fabric is proportional to the horizontal divergence of the flow and weakens from the slab edges toward the center. As such, strong trench-parallel anisotropy forms below retreating and relatively narrow slabs or at the margins of wider plates. The synthetic SKS splitting patterns calculated in the fore arc are controlled by the magnitude of the anisotropy in the upper domain, with trench-perpendicular fast azimuths in the center of large plates and trench parallel toward the plate edges. Instead, above relatively narrow, retreating slabs (≤600 km and low subduction partitioning ratio (SPR)), azimuths are trench parallel due to the strong anisotropy in the lower sub-slab domain. In all models, the anisotropy in the back arc and on the sides of the subducting plate is, respectively, trench perpendicular and sub-parallel to the return flow at depth. Results from our regional scale models may help to infer the flow and composition of the upper mantle by comparison with the wide range of subduction zones seismic data observed globally.