Strong selection on male plumage in a hybrid zone between a hybrid bird species and one of its parents (original) (raw)
Related papers
2014
Reproductive barriers between diverging taxa are necessary for speciation to occur. Premating barriers are thought to be of especially great importance, such as plumage colour which is often used in species recognition and mate choice. In this study, I have investigated male plumage variation between a species of hybrid origin, the Italian sparrow (Passer italiae) and one of its parents, the house sparrow (P. domesticus) in their narrow hybrid zone in the Alps. The Italian sparrow is intermediate in plumage between the house sparrow and its other parent, the Spanish sparrow (P. hispaniolensis) but distinctively different from both, hence plumage traits can potentially contribute to premating isolation between the hybrid and its parents. I use cline theory to infer selection on four sexually dimorphic plumage traits in males (crown, cheek, eyebrow and bib). Quantitative measurements of plumage traits were compared with a molecular hybrid index (species-informative SNPs) to compare ch...
Hybrid speciation through sorting of parental incompatibilities in Italian sparrows
Molecular Ecology, 2014
Speciation by hybridization is emerging as a significant contributor to biological diversification. Yet, little is known about the relative contributions of (i) evolutionary novelty and (ii) sorting of preexisting parental incompatibilities to the build-up of reproductive isolation under this mode of speciation. Few studies have addressed empirically whether hybrid animal taxa are intrinsically isolated from their parents, and no study has so far investigated by which of the two aforementioned routes intrinsic barriers evolve. Here, we show that sorting of preexisting parental incompatibilities contributes to intrinsic isolation of a hybrid animal taxon. Using a genomic cline framework, we demonstrate that the sex-linked and mito-nuclear incompatibilities isolating the homoploid hybrid Italian sparrow at its two geographically separated hybrid-parent boundaries represent a subset of those contributing to reproductive isolation between its parent species, house and Spanish sparrows.
PLoS Genetics, 2014
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (.97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (''mother's curse'') at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread in the opposite direction to form barriers against Spanish sparrows.
Hybrid speciation in sparrows II: a role for sex chromosomes?
Molecular Ecology, 2011
Homoploid hybrid speciation in animals is poorly understood, mainly because of the scarcity of well-documented cases. Here, we present the results of a multilocus sequence analysis on the house sparrow (Passer domesticus), Spanish sparrow (P. hispaniolensis) and their proposed hybrid descendant, the Italian sparrow (P. italiae). The Italian sparrow is shown to be genetically intermediate between the house sparrow and Spanish sparrow, exhibiting genealogical discordance and a mosaic pattern of alleles derived from either of the putative parental species. The average variation on the Z chromosome was significantly reduced compared with autosomal variation in the putative parental species, the house sparrow and Spanish sparrow. Additionally, divergence between the two species was elevated on the Z chromosome relative to the autosomes. This pattern of variation and divergence is consistent with reduced introgression of Z-linked genes and ⁄ or a faster-Z effect (increased rate of adaptive divergence on the Z). F ST-outlier tests were consistent with the faster-Z hypothesis: two of five Z-linked loci (CHD1Z and PLAA) were identified as candidates for being subject to positive, divergent selection in the putative parental species. Interestingly, the two latter genes showed a mosaic pattern in the (hybrid) Italian sparrow; that is, the Italian sparrow was found to be fixed for Spanish sparrow alleles at CHD1Z and to mainly have house sparrow alleles at PLAA. Preliminary evidence presented in this study thus suggests that sex chromosomes may play a significant role in this case of homoploid hybrid speciation.
Journal of Ornithology, 2005
Gene transfer may occur following hybridization between closely related species if hybrids are viable and able to breed with individuals of one or both of the parental species. House (Passer domesticus) and tree sparrows (P. montanus) occasionally hybridize and produce viable offspring. Previously, we concluded that male tree • house sparrow hybrids are most probably fertile based on the observation of a male F1 hybrid feeding the nestlings with a female house sparrow in two consecutive clutches. However, recent DNA analyses based on blood samples revealed that all nestlings (4) in the first clutch were sired by a neighbouring house sparrow male, whereas nestlings in the second clutch (2) were not blood sampled and most probably died before fledging. This indicates that extensive extra-pair fertilization confounded our previous conclusion, and indicates that social partnership and attending behaviour can be imprecise measures of paternity.
Patterns of introgression vary within an avian hybrid zone
BMC Ecology and Evolution, 2021
BackgroundExploring hybrid zone dynamics at different spatial scales allows for better understanding of local factors that influence hybrid zone structure. In this study, we tested hypotheses about drivers of introgression at two spatial scales within the Saltmarsh Sparrow (Ammospiza caudacuta) and Nelson’s Sparrow (A. nelsoni) hybrid zone. Specifically, we evaluated the influence of neutral demographic processes (relative species abundance), natural selection (exogenous environmental factors and genetic incompatibilities), and sexual selection (assortative mating) in this mosaic hybrid zone. By intensively sampling adults (n = 218) and chicks (n = 326) at two geographically proximate locations in the center of the hybrid zone, we determined patterns of introgression on a fine scale across sites of differing habitat. We made broadscale comparisons of patterns from the center with those of prior studies in the southern edge of the hybrid zone.ResultsA panel of fixed SNPs (135) identi...
Genomic Contingencies and the Potential for Local Adaptation in a Hybrid Species
The American naturalist, 2018
Hybridization is increasingly recognized as a potent evolutionary force. Although additive genetic variation and novel combinations of parental genes theoretically increase the potential for hybrid species to adapt, few empirical studies have investigated the adaptive potential within a hybrid species. Here, we address whether genomic contingencies, adaptation to climate, or diet best explain divergence in beak morphology using genomically diverged island populations of the homoploid hybrid Italian sparrow Passer italiae from Crete, Corsica, and Sicily. Populations vary significantly in beak morphology both between and within islands of origin. Temperature seasonality best explains population divergence in beak size. Interestingly, beak shape along all significant dimensions of variation was best explained by annual precipitation, genomic composition, and their interaction, suggesting a role for contingencies. Moreover, beak shape similarity to a parent species correlates with propo...
BMC evolutionary biology, 2016
Evolutionary processes, including selection and differential fitness, shape the introgression of genetic material across a hybrid zone, resulting in the exchange of some genes but not others. Differential introgression of molecular or phenotypic markers can thus provide insight into factors contributing to reproductive isolation. We characterized patterns of genetic variation across a hybrid zone between two tidal marsh birds, Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) sparrows (n = 286), and compared patterns of introgression among multiple genetic markers and phenotypic traits. Geographic and genomic cline analyses revealed variable patterns of introgression among marker types. Most markers exhibited gradual clines and indicated that introgression exceeds the spatial extent of the previously documented hybrid zone. We found steeper clines, indicating strong selection for loci associated with traits related to tidal marsh adaptations, including for a marker lin...
Intraspecific genomic variation and local adaptation in a young hybrid species
2019
Hybridization increases genetic variation, hence hybrid species may have a strong evolutionary potential once their admixed genomes have stabilized and incompatibilities have been purged. Yet, little is known about how such hybrid lineages evolve at the genomic level following their formation, in particular the characteristics of their adaptive potential, i.e. constraints and facilitations of diversification. Here we investigate how the Italian sparrow (Passer italiae), a homoploid hybrid species, has evolved and locally adapted to its variable environment. Using restriction site-associated DNA sequencing (RAD-seq) on several populations across the Italian peninsula, we evaluate how genomic constraints and novel genetic variation have influenced population divergence and adaptation. We show that population divergence within this hybrid species has evolved in response to climatic variation. As in non-hybrid species, climatic differences may even reduce gene flow between populations, ...
Journal of Evolutionary Biology
Patterns of phenotypic and genic frequencies across hybrid zones provide insight into the origin and evolution of reproductive isolation. The Reunion grey white-eye, Zosterops borbonicus, exhibits parapatrically distributed plumage colour forms across the lowlands of the small volcanic island of Reunion (Mascarene archipelago). These forms meet and hybridize in regions that are natural barriers to dispersal (rivers, lava fields). Here, we investigated the relationship among patterns of differentiation at neutral genetic (microsatellite) markers, phenotypic traits (morphology and plumage colour) and niche characteristics across three independent hybrid zones. Patterns of phenotypic divergence revealed that these hybrid zones are among the narrowest ever documented in birds. However, the levels of phenotypic divergence stand in stark contrast to the lack of clear population neutral genetic structure between forms. The position of the hybrid zones coincides with different natural physical barriers, yet is not associated with steep changes in vegetation and related climatic variables, and major habitat transitions are shifted from these locations by at least 18 km. This suggests that the hybrid zones are stabilized over natural dispersal barriers, independently of environmental boundaries, and are not associated with niche divergence. A striking feature of these hybrid zones is the very low levels of genetic differentiation in neutral markers between forms, suggesting that phenotypic divergence has a narrow genetic basis and may reflect recent divergence at a few linked genes under strong selection, with a possible role for assortative mating in keeping these forms apart.