Histone proteomics implicates H3K36me2 and its regulators in mouse embryonic stem cell pluripotency exit and lineage choice (original) (raw)
Objectives Gene expression changes during embryonic stem cell (ESC) differentiation is regulated by epigenetic mechanisms. Understanding these can help uncover how cell fate decisions are made during early embryonic development. Comparison of chromatin of ESCs with lineage-committed cells can implicate chromatin factors functional in exit from pluripotency and the choice of proper lineages. Therefore, we quantitatively analyzed histone modifications in mouse ESC differentiation towards neuroectoderm and endoderm. Methods We cultured mouse ESCs (mESCs) and differentiated them towards neuroectoderm or endoderm lineages and performed mass spectrometry on total histones. Subsequent Western blots verified significantly altered H3K36me2. RT-qPCR analyses showed changes in H3K36-specific methyltransferases, demethylases and readers at mESC stage or during neuroectoderm/endoderm commitment. Results We presented quantitative histone modification levels in mESCs and lineage-committed cells. H...