Materials Engineering, Science, Processing and Design (original) (raw)
Related papers
'Outstanding academic title for 2003 – this title has been selected for its excellence in scholarship and presentation, the significance of its contribution to the field, and because of its important treatment of its subject.' Choice magazine This third edition of what has become a modern classic presents a lively overview of materials science for students of structural and mechanical engineering. It contains chapters on the structure of engineering materials, the determination of mechanical properties, and the structure – property relationships of metals and alloys, glasses and ceramics, organic polymeric materials and composite materials. It contains a section with 50 thought-provoking questions to check students' knowledge and understanding, as well as a series of useful appendices. The third edition includes new topics such as superplasticity and the Bauschinger Effect, expanded coverage of such areas as organic polymers and updated reading lists. Clear, concise and authoritative, the third edition of Materials for engineering will confirm its position as an ideal text for undergraduates and a useful reference source on materials structure and properties for the practising engineer.
General introduction ix A. Metals 1. Metals 3 the generic metals and alloys; iron-based, copper-based, nickel-based, aluminium-based and titanium-based alloys; design data 2. Metal structures 14 the range of metal structures that can be altered to get different properties: crystal and glass structure, structures of solutions and compounds, grain and phase boundaries, equilibrium shapes of grains and phases 3. Equilibrium constitution and phase diagrams 25 how mixing elements to make an alloy can change their structure; examples: the lead-tin, copper-nickel and copper-zinc alloy systems 4. Case studies in phase diagrams 34 choosing soft solders; pure silicon for microchips; making bubble-free ice 5. The driving force for structural change 46 the work done during a structural change gives the driving force for the change; examples: solidification, solid-state phase changes, precipitate coarsening, grain growth, recrystallisation; sizes of driving forces 6. Kinetics of structural change: I -diffusive transformations 57 why transformation rates peak -the opposing claims of driving force and thermal activation; why latent heat and diffusion slow transformations down 7. Kinetics of structural change: II -nucleation 68 how new phases nucleate in liquids and solids; why nucleation is helped by solid catalysts; examples: nucleation in plants, vapour trails, bubble chambers and caramel 8. Kinetics of structural change: III -displacive transformations 76 how we can avoid diffusive transformations by rapid cooling; the alternative -displacive (shear) transformations at the speed of sound 9. Case studies in phase transformations 89 artificial rain-making; fine-grained castings; single crystals for semiconductors; amorphous metals 10. The light alloys 100 where they score over steels; how they can be made stronger: solution, age and work hardening; thermal stability 11. Steels: I -carbon steels 113 structures produced by diffusive changes; structures produced by displacive changes (martensite); why quenching and tempering can transform the strength of steels; the TTT diagram 12. Steels: II -alloy steels 125 adding other elements gives hardenability (ease of martensite formation), solution strengthening, precipitation strengthening, corrosion resistance, and austenitic (f.c.c.) steels 13. Case studies in steels 133 metallurgical detective work after a boiler explosion; welding steels together safely; the case of the broken hammer 14. Production, forming and joining of metals 143 processing routes for metals; 17. The mechanical properties of ceramics 177 high stiffness and hardness; poor toughness and thermal shock resistance; the excellent creep resistance of refractory ceramics vi Contents 18. The statistics of brittle fracture and case study 185 how the distribution of flaw sizes gives a dispersion of strength: the Weibull distribution; why the strength falls with time (static fatigue); case study: the design of pressure windows 19. Production, forming and joining of ceramics 194 processing routes for ceramics; making and pressing powders to shape; working glasses; making high-technology ceramics; joining ceramics; applications of high-performance ceramics 20. Special topic: cements and concretes 207 historical background; cement chemistry; setting and hardening of cement; strength of cement and concrete; high-strength cements C. Polymers and composites 21. Polymers 219 the generic polymers: thermoplastics, thermosets, elastomers, natural polymers; design data 22. The structure of polymers 228 giant molecules and their architecture; molecular packing: amorphous or crystalline? 23. Mechanical behaviour of polymers 238 how the modulus and strength depend on temperature and time 24. Production, forming and joining of polymers 254 making giant molecules by polymerisation; polymer "alloys"; forming and joining polymers 25. Composites: fibrous, particulate and foamed 263 how adding fibres or particles to polymers can improve their stiffness, strength and toughness; why foams are good for absorbing energy 26. Special topic: wood 277 one of nature's most successful composite materials D. Designing with metals, ceramics, polymers and composites 27. Design with materials 289 the design-limiting properties of metals, ceramics, polymers and composites; design methodology Contents vii 28. Case studies in design 296 1. Designing with metals: conveyor drums for an iron ore terminal 296 2. Designing with ceramics: ice forces on offshore structures 303 3. Designing with polymers: a plastic wheel 308 4. Designing with composites: materials for violin bodies 312 Appendix 1 Teaching yourself phase diagrams 320 Appendix 2 Symbols and formulae 370 Index 377 viii Contents
examples of structures and devices showing how we select the right material for the job 3 A. Price and availability 2. The Price and Availability of Materials 15 what governs the prices of engineering materials, how long will supplies last, and how can we make the most of the resources that we have? B. The elastic moduli 3. The Elastic Moduli 27 stress and strain; Hooke's Law; measuring Young's modulus; data for design 4. Bonding Between Atoms 36 the types of bonds that hold materials together; why some bonds are stiff and others floppy 5. Packing of Atoms in Solids 45 how atoms are packed in crystalscrystal structures, plane (Miller) indices, direction indices; how atoms are packed in polymers, ceramics and glasses 6 . The Physical Basis of Young's Modulus 58 how the modulus is governed by bond stiffness and atomic packing; the glass transition temperature in rubbers; designing stiff materialsman-made composites 7. Case Studies of Modulus-limited Design 66 the mirror for a big telescope; a stiff beam of minimum weight; a stiff beam of minimum cost vi Contents C. Yield strength, tensile strength, hardness and ductility 8. The Yield Strength, Tensile Strength, Hardness and Ductility definitions, stress-strain curves (true and nominal), testing methods, data 9. Dislocations and Yielding in Crystals the ideal strength; dislocations (screw and edge) and how they move to give plastic flow 10. Strengthening Methods and Plasticity of Polycrystals solid solution hardening; precipitate and dispersion strengthening; work-hardening; yield in polycrystals 11. Continuum Aspects of Plastic Flow the shear yield strength; plastic instability; the formability of metals and polymers 12. Case Studies in Yield-limited Design materials for springs; a pressure vessel of minimum weight; a pressure vessel of minimum cost; how metals are rolled into sheet D. Fast fracture, toughness and fatigue where the energy comes from for catastrophic crack growth; the condition for fast fracture; data for toughness and fracture toughness 13. Fast Fracture and Toughness 14. Micromechanisms of Fast Fracture ductile tearing, cleavage; composites, alloysand why structures are more likely to fail in the winter 15. Fatigue Failure fatigue testing, Basquin's Law, Coffin-Manson Law; crack growth rates for pre-cracked materials; mechanisms of fatigue 16. Case Studies in Fast Fracture and Fatigue Failure fast fracture of an ammonia tank; how to stop a pressure vessel blowing up; is cracked cast iron safe? E. Creep deformation and fracture high-temperature behaviour of materials; creep testing and creep curves; consequences of creep; creep damage and creep fracture 17. Creep and Creep Fracture 77 93 104 111 119 131 140 146 155 169 Contents vii 18. Kinetic Theory of Diffusion 1 79 Arrhenius's Law; Fick's first law derived from statistical mechanics of thermally activated atoms; how diffusion takes place in solids 19. Mechanisms of Creep, and Creep-resistant Materials 187 metals and ceramicsdislocation creep, diffusion creep; creep in polymers; designing creep-resistant materials 20. The Turbine Blade -A Case Study in Creep-limited Design 197 requirements of a turbine-blade material; nickel-based super-alloys, blade cooling; a new generation of materials?metal-matrix composites, ceramics, cost effectiveness F. Oxidation and corrosion 21. Oxidation of Materials the driving force for oxidation; rates of oxidation, mechanisms of oxidation; data 22. Case Studies in Dry Oxidation making stainless alloys; protecting turbine blades 23. Wet Corrosion of Materials voltages as driving forces; rates of corrosion; why selective attack is especially dangerous 24. Case Studies in Wet Corrosion how to protect an underground pipeline; materials for a light-weight factory roof; how to make motor-car exhausts last longer G. Friction, abrasion and wear 25. Friction and Wear surfaces in contact; how the laws of friction are explained by the asperity-contact model; coefficients of friction; lubrication; the adhesive and abrasive wear of materials 26. Case Studies in Friction and Wear the design of a journal bearing; materials for skis and sledge runners; 'non-skid' tyres 211 219 225 232 241 250
Materials for Aerospace Structures.docx
The use of different materials as metals, wood and other modern materials like composites, require a previous evaluation of its performance under corrosion, creep, tension, compression, bending and fatigue. In general, these requirements lead to a few number of materials to choose during the project of one component, but in some cases, there's a lot of options that can be selected. In this work, a mechanical approach is considered for some classes of materials. Of course, a complete analysis involves a management science, also called, operational research, with an application of linear programming or, in some cases, heuristics models like ants' colony, but this isn't our target at this moment. It's possible to see, with the mechanical approach, the advantage of different material's application.
Chapter5: Aircraft Materials, Processes, & Hardware.FAA.pdf
Of primary concern in aircraft maintenance are such general properties of metals and their alloys as hardness, malleability, ductility, elasticity, toughness, density, brittleness, fusibility, conductivity contraction and expansion, and so forth. These terms are explained to establish a basis for further discussion of structural metals.
Evolution of Aerospace Materials: A Review
IRJET, 2022
The choice of materials used to construct an aircraft is of paramount importance due to several factors, such as safety, structural integrity and weight optimization. In this article, the evolution of materials that are particularly used in the aerospace industry since the beginning of last century is reported. This report will review the different materials that have been used in the aerospace industry since its inception. They include, but are not limited to, metals, plastics, composites, ceramics and glasses. With the development of new materials technology, aerospace engineering has quickly become one of the fastest growing industries and it is only set to continue to grow exponentially with innovations like 3D printing and nanotechnology. Alongside other industries like automobile engineering and locomotive manufacturing, aerospace engineering has benefited from such developments which have also helped increase space travel. Research is being conducted on materials that are designed to have excellent properties, including high strength/weight ratio, easy manufacturability, and corrosion and heat resistance. These materials would be suitable for aircrafts and offer a variety of benefits.