Blood cell capture in a sawtooth dielectrophoretic microchannel (original) (raw)

Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels

Electrophoresis, 2008

The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform sizebased fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (,95%) at a throughput of ,2.2610 4 cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.

Using a Microfluidic–Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

Japanese Journal of Applied Physics, 2012

To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v ¼ 0:02{0:1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

Dielectrophoretic separation of blood cells

Biomedical Microdevices

Microfluidic dielectrophoretic (DEP) devices enable the label-free separation and isolation of cells based on differences in their electrophysiological properties. The technique can serve as a tool in clinical diagnostics and medical research as it facilitates the analysis of patient-specific blood composition and the detection and isolation of pathogenic cells like circulating tumor cells or malaria-infected erythrocytes. This review compares different microfluidic DEP devices to separate platelets, erythrocytes and leukocytes including their cellular subclasses. An overview and experimental setups of different microfluidic DEP devices for the separation, trapping and isolation or purification of blood cells are detailed with respect to their technical design, electrode configuration, sample preparation, applied voltage and frequency and created DEP field based and related to the separation efficiency. The technique holds the promise that results can quickly be attained in clinical...

Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit

Micromachines

Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components o...

Microdevice for plasma separation from whole human blood using bio- physical and geometrical effects

In this research work, we present a simple and efficient passive microfluidic device for plasma separation from pure blood. The microdevice has been fabricated using conventional photolithography technique on a single layer of polydimethylsiloxane, and has been extensively tested on whole blood and enhanced (upto 62%) hematocrit levels of human blood. The microdevice employs elevated dimensions of about 100 μm; such elevated dimensions ensure clog-free operation of the microdevice and is relatively easy to fabricate. We show that our microdevice achieves almost 100% separation efficiency on undiluted blood in the flow rate range of 0.3 to 0.5 ml/min. Detailed biological characterization of the plasma obtained from the microdevice is carried out by testing: proteins by ultraviolet spectrophotometric method, hCG (human chorionic gonadotropin) hormone, and conducting random blood glucose test. Additionally, flow cytometry study has also been carried on the separated plasma. These tests attest to the high quality of plasma recovered. The microdevice developed in this work is an outcome of extensive experimental research on understanding the flow behavior and separation phenomenon of blood in microchannels. The microdevice is compact, economical and effective, and is particularly suited in continuous flow operations.

High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics

IEEE transactions on biomedical circuits and systems, 2017

White blood cells (WBCs) constitute only about 0.1% of human blood cells, yet contain rich information about the immune status of the body; thus, separation of WBCs from the whole blood is an indispensable and critical sample preparation step in many scientific, clinical, and diagnostic applications. In this paper, we developed a continuous and high-throughput microfluidic WBC separation platform utilizing the differential inertial focusing of particles in serpentine microchannels. First, separation performance of the proposed method is characterized and evaluated using polystyrene beads in the serpentine channel. The purity of 10-μm polystyrene beads is increased from 0.1% to 80.3% after two cascaded processes, with an average enrichment ratio of 28 times. Next, we investigated focusing and separation properties of Jurkat cells spiked in the blood to mimic the presence of WBCs in whole blood. Finally, separation of WBCs from human whole blood was conducted and separation purity of ...

Separation Modeling of Blood Cells using Dielectrophoretic Field Flow

International Journal of Computer Applications

Improving the ability to separate particles and cells in a continuous flow pattern facilitates faster and incessant medical diagnosis. In this paper, a modified design is presented that is capable of separating platelet cells from other blood cells in a continuous flow. The modified device achieves the separation of platelets using Dielectrophoretics (DEP) mechanism. A two dimensional finite element model was exploited to test different design parameters, including the applied separation peak to peak voltage, frequency, and speed of the flow inlet. Simulations of the modified microfluidic device showed successful separation of the red blood cells from platelets and also from other mixed blood cells. The modeling and simulation results demonstrate that cell separation can be achieved with high purity levels of platelets of up to 99.8%. The device's optimized technology makes it suitable for portable, bedside and point-of-care testing applications.

Blood plasma separation in elevated dimension T-shaped microchannel

Biomedical Microdevices, 2013

In recent years, microfluidic chips have proven ideal tools for biochemical analysis, which, however, demands a unique and compatible plasma separation scheme. Various research groups have established continuous flow separation methods in microfluidic devices; however, they have worked with relatively small dimension microchannels (similar to the blood cell diameter). The present work demonstrates separation of plasma by utilizing the hydrodynamic separation techniques in microchannels with size of the order of mm. The separation process exploits the phenomenon, which is very similar to that of plasma skimming explained under Zweifach-Fung bifurcation law. The present experiments demonstrates for, the first time, that applicability of the Zweifach-Fung bifurcation law can be extended to dimensions much higher than the suspended particle size. The Tmicrochannel device (comprising perpendicularly connected blood and plasma channels) were micro-fabricated using conventional PDMS micro-molding techniques. Three variables (feed hematocrit, main channel width, and flow rate distributions) were identified as the important parameters which define the device's efficiency for the blood plasma separation. A plasma separation efficiency of 99.7 % was achieved at a high flow ratio. Novel concepts of 2-stage or multiple plasma channel designs are also proposed to yield high separation efficiency with undiluted blood. The possible underlying principle causing plasma separation (viz. aggregation and shear thinning) are investigated in detail as part of this work. The results are significant because they show nearly 100 % separations in microchannels which are much easier to fabricate than previously designed devices.