Restriction of AID activity and somatic hypermutation by PARP-1 (original) (raw)

Does DNA repair occur during somatic hypermutation?

Seminars in Immunology, 2012

Activation-induced deaminase (AID) initiates a flood of DNA damage in the immunoglobulin loci, leading to abasic sites, single-strand breaks and mismatches. It is compelling that some proteins in the canonical base excision and mismatch repair pathways have been hijacked to increase mutagenesis during somatic hypermutation. Thus, the AID-induced mutagenic pathways involve a mix of DNA repair proteins and low fidelity DNA polymerases to create antibody diversity. In this review, we analyze the roles of base excision repair, mismatch repair, and mutagenesis during somatic hypermutation of rearranged variable genes. The emerging view is that faithful base excision repair occurs simultaneously with mutagenesis, whereas faithful mismatch repair is mostly absent.

Beyond DNA repair, the immunological role of PARP-1 and its siblings

Immunology, 2013

ADP-ribosylation is the addition of one or more (up to some hundreds) ADP-ribose moieties to acceptor proteins. There are two major families of enzymes that catalyze this reaction: extracellular ADP-ribosyl-transferases (ARTs), which are bound to the cell membrane by a GPI anchor or are secreted, and poly(ADP-ribose)-polymerases (PARPs), which are present in the cell nucleus and/or cytoplasm. Recent findings revealed a wide immunological role for ADP-ribosylating enzymes. ARTs, by sensing extracellular NAD concentration, can act as danger detectors. PARP-1, the prototypical representative of the PARP family, known to protect cells from genomic instability, is involved in the development of inflammatory responses and several forms of cell death. PARP-1 also plays a role in adaptive immunity by modulating the ability of dendritic cells to stimulate T cells or by directly affecting differentiation and functions of T and B cells. Both PARP-1 and PARP-14 (CoaSt6) KO mice were described to display reduced Th2 cell differentiation and allergic responses. Our recent findings showed that PARP-1 is involved in the differentiation of Foxp3 + regulatory T cells, suggesting a role for PARP-1 in tolerance induction. Also ARTs regulate Treg cell homeostasis by promoting Treg apoptosis during inflammatory responses. PARP inhibitors ameliorates immune-mediated diseases in several experimental models, including rheumatoid arthritis, colitis, experimental autoimmune encephalomyelitis, and allergy. All together these findings show that ADP-ribosylating enzymes, in particular PARP-1, play a pivotal role in the regulation of immune responses and may represent a good target for new therapeutic approaches in immune-mediated diseases.

Immunoglobulin Somatic Hypermutation: Double-Strand DNA Breaks, AID and Error-Prone DNA Repair

2003

Somatic hypermutation (SHM) is critical for antibody affinity maturation and the generation of memory B cells. Somatic mutations consist mainly of single nucleotide changes with rare insertions and deletions. Such changes would be introduced during error-prone repair of lesions involving single-strand DNA breaks (SSBs) or, more likely, double-strand DNA breaks (DSBs), as DSBs occur exclusively in genes that have the potentials to undergo SHM. In the human, such genes include Ig V, BCL6, and c-MYC. In these germline genes, DSBs are blunt. In rearranged Ig V, BCL6, and translocated c-MYC genes, blunt DSBs are processed to yield resected DNA ends. This process is dependent on the expression of activation-induced cytidine deaminase (AID), which is selectively expressed upon CD40-signaling in hypermutating B cells. CD40-induced and AID-dependent free 5′-and 3′-staggered DNA ends critically channel the repair of DSBs through the homologous recombination (HR) repair pathway. During HR, the modulation of critical translesion DNA polymerases, as signaled by cross-linking of the B cell receptor (BCR) for antigen, leads to the insertions of mismatches, i.e., mutations. The nature of DSBs, the possible roles of AID in the modification of DSBs and that of the translesion DNA polymerases ζ and ι in the subsequent repair process that lead to the insertions of mutations are discussed here within the context of an integrated model of SHM.

Hijacked DNA repair proteins and unchained DNA polymerases

Philosophical Transactions of the Royal Society B: Biological Sciences, 2009

Somatic hypermutation of immunoglobulin (Ig) genes occurs at a frequency that is a million times greater than the mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2 and MLH1, since they would recognize mismatches. The MSH2–MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analysed the role of low-fidelity DNA polymerases η, ι and θ in synthesizing mutations, and conclude that polymerase η is ...

Competition between PARP-1 and Ku70 control the decision between high-fidelity and mutagenic DNA repair

DNA Repair, 2011

Affinity maturation of antibodies requires a unique process of targeted mutation that allows changes to accumulate in the antibody genes while the rest of the genome is protected from offtarget mutations that can be oncogenic. This targeting requires that the same deamination event be repaired either by a mutagenic or a high-fidelity pathway depending on the genomic location. We have previously shown that the BRCT domain of the DNA-damage sensor PARP-1 is required for mutagenic repair occurring in the context of IgH and IgL diversification in the chicken B cell line DT40. Here we show that immunoprecipitation of the BRCT domain of PARP-1 pulls down Ku70 and the DNA-PK complex although the BRCT domain of PARP-1 does not bind DNA, suggesting that this interaction is not DNA dependent. Through sequencing the IgL variable region in PARP-1 −/− cells that also lack Ku70 or Lig4, we show that Ku70 or Lig4 deficiency restores GCV to PARP-1 −/− cells and conclude that the mechanism by which PARP-1 is promoting mutagenic repair is by inhibiting high-fidelity repair which would otherwise be mediated by Ku70 and Lig4.

DNA repair in antibody somatic hypermutation

Trends in immunology, 2006

Somatic hypermutation (SHM) underlies the generation of a diverse repertoire of high-affinity antibodies. It is effected by a two-step process: (i) DNA lesions initiated by activation-induced cytidine deaminase (AID), and (ii) lesion repair by the combined intervention of DNA replication and repair factors that include mismatch repair (MMR) proteins and translesion DNA synthesis (TLS) polymerases. AID and TLS polymerases that are crucial to SHM, namely polymerase (pol) theta, pol zeta and pol eta, are induced in B cells by the stimuli that are required to trigger this process: B-cell receptor crosslinking and CD40 engagement by CD154. These polymerases, together with MMR proteins and other DNA replication and repair factors, could assemble to form a multimolecular complex ("mutasome") at the site of DNA lesions. Molecular interactions in the mutasome would result in a "polymerase switch", that is, the substitution of the high-fidelity replicative pol delta and po...

p21CDKN1A Regulates the Binding of Poly(ADP-Ribose) Polymerase-1 to DNA Repair Intermediates

PLOS ONE, 2016

The cell cycle inhibitor p21 CDKN1A was previously found to interact directly with DNA nicksensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to coimmunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.

Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks

DNA Repair, 2008

Although poly(ADP-ribose) polymerase-1 (PARP-1) has no enzymatic activity involved in DNA damage processing by the base excision repair (BER) pathway, PARP-1 deficient cells are genetically unstable and sensitive to DNA-damaging agents. To explain this paradox, we investigated the impact of PARP-1 on BER in mammalian cells. We reduced cellular PARP-1 protein levels using siRNA, then introduced DNA damage by hydrogen peroxide treatment and examined the repair response. We find that PARP-1 is not involved in recruitment of the major BER proteins to sites of DNA damage. However, we find that PARP-1 protects excessive DNA single strand breaks (SSBs) from converting into DNA double strand breaks (DSBs) thus preserving them for subsequent repair by BER enzymes. This suggests that PARP-1 plays an important role in BER by extending the ability of BER enzymes to process DNA single strand breaks arising directly after mutagen stress or during processing of DNA lesions following extensive DNA damage.