Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes (original) (raw)
Abstract
Production of residues from industries and construction and demolition sectors has increased during last years. The total amount of debris produced according to different estimations reaches values close to 42 million tonnes yr-1. Much of this waste has been thrown to landfill, without considering its potential for reuse, recycling or valuation. The aim of this research is to describe some of the physical and mechanical properties of different laboratory-mixed concretes, using various proportions of additional materials recovered from industrial waste and demolition rubble. The added materials are included either as admixtures (forestry residues, cork dust, steel fibre) or in partial substitution of natural aggregates (wire from electrical residues, tyre rubber, white ceramic, sanitary porcelain or shale). The laboratory tests have followed the standard EN protocols. Assay results were variable according to the nature of the material added to the mix: organic materials and shale, despite the steel fibre reinforcement, reduce the compression strength, but are suitable for the manufacture of lightweight concrete for agricultural pavements, with certain flexion resistance and a relatively good behaviour to impact. The substitution of natural aggregates with ceramic and porcelain wastes produces a signif icant increase in compression resistance, making them suitable for the manufacture of concrete with characteristic resistances above 40 MPa, which can be used both for structures or other agricultural elements: separators, feeders, slat floors. As a conclusion can be stated the possibility of reuse these wastes for the production of structural or non-structural concrete, with different applications in agricultural engineering.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (38)
- AMORIM L.V., LIRA H.L., FERREIRA H.C., 2003. Use of residential construction waste and residues from red ceramic industry in alternative mortars. J Environ Eng 129(10), 916-920. doi: 10.1061/(ASCE)0733-9372(2003) 129:10(916).
- ANEIROS RODRÍGUEZ L.M., 2008. Gestión de RCD y su repercusión en el desarrollo sostenible. Residuos 102(18), 48-60. [In Spanish].
- ANONYMOUS, 2001. España reutilizará el 60% de los residuos de construcción dentro de cinco años. Cercha 61, 17-18 [In Spanish].
- ARREDONDO F., 1968. Dosificación de hormigones. Series manuales y normas del Instituto de las Ciencias de la Construcción Eduardo Torroja, 3 rd ed, Madrid. [In Spanish].
- BINICI H., 2007. Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars proper- ties. Constr Build Mater 21(6), 1191-1197. doi:10.1016/ j.conbuildmat.2006.06.002.
- BOE, 2009. Resolution of 20 January, The National Secre- tary for Climate Change to approve the Integrated Natio- nal Residues Plan 2008-2015 (Plan Nacional Integrado de Residuos 2008-2015). Boletín Oficial del Estado No. 49, 26/2/2009 [In Spanish].
- CORREIA J.R., DE BRITO J., PEREIRA A.S., 2005. Me- chanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cement Concrete Comp 27(4), 429-433. doi:10.1016/j.cemconcomp.2004.07.005.
- CORREIA J.R., DE BRITO J., PEREIRA A.S., 2006. Effects on concrete durability of using recycled ceramic aggre- gates. Mater Structur 39(2), 169-177. doi:10.1617/ s11527-005-9014-7.
- DOMÍNGUEZ J.A., MARTÍNEZ E., VILLANUEVA V., 2004. Hormigones reciclados: una alternativa sustentable y rentable. Cemento-Hormigón 867, 34-45. [In Spanish].
- EHE-08, 2008. Instrucción de hormigón estructural [Structural concrete standard].
- EVANGELISTA L., DE BRITO J., 2007. Mechanical beha- viour of concrete made with fine recycled concrete aggre- gates. Cement Concrete Comp 29(5), 397-401. doi:10.1016/ j.cemconcomp.2006.12.004.
- GONZÁLEZ B., MARTÍNEZ F., 2005. Recycled aggregates concrete: aggregate and mix properties. Materiales de Construcción 55(279), 53-66. doi:10.3989/mc.2005. v55.i279.
- GONZÁLEZ B., LLAMAS B., JUAN A., GUERRA I., 2007. Tests on concrete containing cork powder admixtures. Materiales de Construcción 57(286), 83-90. doi:10.3989/ mc.2007.v57.i286.
- GORDON J.E., 2004. Estructuras o por qué las cosas no se caen. Calamar Ediciones, Madrid. 395 pp. [In Spanish].
- GUERRA I., VIVAR I., LLAMAS B., JUAN A., MORÁN J., 2008. Eco-eff icient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manage 29(2), 643-646. doi:10.1016/j.wasman.2008.06.018.
- KALTAKCI M.Y., ARSLAN M.H., YILMAZ U.S., 2007. The effects of steel fibre reinforced concrete on system ductility. Materiales de Construcción 57(285), 71-84. doi:10.3989/mc.2007.v57.i285.
- KOYUNCU H., GUNEY Y., YILMAZ G., KOYUNCU S., BAKIS R., 2004. Utilization of ceramic wastes in the cons- truction sector. Key Engineering Materials 264-268, 2509- 2512. doi: 10.4028/www.scientific.net/KEM.264-268.2509.
- KYOTO PROTOCOL, 1997. United Nations Framework Convention on Climate Change. Kyoto, Japan. 25 pp.
- LÓPEZ V., LLAMAS B., JUAN A., MORÁN J.M., GUERRA I., 2007. Eco-efficient concretes: impact of the use of white ceramic powder on the mechanical properties of concrete. Biosyst Eng 96, 559-564. doi:10.1016/ j.biosystemseng.2007.01.004.
- MORENO ALMANSA E., FERNÁNDEZ CÁNOVAS M., 1997. Mix design of steel fibre reinforced concrete. Mate- riales de Construcción 247-248, 11-26. doi:10.3989/mc. 1997.v47.i247-248.
- POON C.S., SHUI Z.H., LAM L., 2004. Effect of micro- structure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr Build Mater 18(6), 461-468. doi:10.1016/j.conbuildmat.2004.03.005.
- PORTELLA K.F., JOUKOSKI A., FRANCK R., DERKSEN R., 2006. Secondary recycling of electrical insula- tor porcelain waste in Portland concrete structures: determination of the performance under accelerated aging. Cerâmica 52(323), 155-167. doi: 10.1590/S0366- 69132006000300008.
- PRESTI S., 2002. Reciclaje de materiales y conservación de energía. Available in http://residuos.ecoportal.net/ content/view/full/28031S [26 Jan 2010].
- PUERTAS F., BARBA A., GAZULLA M.F., GÓMEZ M.P., PALACIOS M., MARTÍNEZ S., 2006. Ceramic wastes as raw materials in Portland cement clinker fabrication: cha- racterization and alkaline activation. Materiales de Cons- trucción 56(281), 73-84. doi:10.3989/mc.2006.v56.i281.
- ROLÓN J.C., NIEVES D., HUETE R., BLANDÓN B., TERÁN A., PICHARDO R., 2007. Characterization of concrete made with recycled aggregate from concrete demolition waste. Materiales de Construcción 57(288), 5-15. doi:10.3989/mc.2007.v57.i288.
- RYU J.S., 2002. An experimental study on the effect of recycled aggregate on concrete properties. Mag Concrete Res 54(1), 7-12. doi: 10.1680/macr.2002.54.1.7.
- SÁNCHEZ M., MARÍN F.P., FRÍAS M., RIVERA J., 2001. Viability of utilization of waste materials from ceramic products in precast concretes. Materiales de Construcción 51(263-264), 149-161. doi:10.3989/mc.2001.v51.i263- 264.
- SÁNCHEZ M., ALAEJOS P., 2003. Árido reciclado proce- dente de escombros de hormigón para la fabricación de hormigón estructural. Cemento-Hormigón 850, 36-50. [In Spanish].
- SÁNCHEZ M., ALAEJOS P., 2005. Recomendaciones para la utilización de árido reciclado en hormigón. Cercha 78, 70-80. [In Spanish].
- SÁNCHEZ M., ALAEJOS P., 2006. Influencia del árido reciclado en las propiedades del hormigón estructural. Cemento-Hormigón 889, 54-61 [In Spanish].
- SENTHAMARAI R.M., DEVADAS MANHOHARAN P., 2005. Concrete with ceramic waste aggregate. Ce- ment Concrete Comp 27(9-10), 910-913. doi:10.1016/ j.cemconcomp.2005.04.003.
- SONG P.S., HWANG S., 2004. Mechanical properties of high-strength steel reinforced concrete. Constr Build Mater 18(9), 669-673. doi:10.1016/j.conbuildmat.2004. 04.027.
- SONG P.S., WU J.C., HWANG S., SHEU B.C., 2005. Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fibre reinforced concrete. Cement Concrete Res 35(2), 393- 399. doi:10.1016/j.cemconres.2004.07.021.
- SUÁREZ G., LLAMAS B., GUERRA I., 2004. Escombreras de pizarra: Ecoeficiencia y hormigones en la agroinge- niería. Boletín del Instituto Tecnológico de la Pizarra 1, 22-26 [In Spanish].
- WITOSZEK SCHULTZ B., HERNÁNDEZ OLIVARES F., ALONSO FERNÁNDEZ R., 2004. Firmes, León (Spain), 24-27 May. pp. 821-834. Available in http://www. aecarretera.com/congresos/CL26.pdf [26 Jan 2010]. [In Spanish].
- YAGÜE A., VALLS S., VÁQUEZ E., KUCHINOW V., 2003. Utilización de lodo seco de depuradora de aguas resi- duales como adición en adoquines de hormigón prefa- bricado. Materiales de Construcción 52(267), 31-41. doi:10.3989/mc.2003.v52.i267 [In Spanish].
- Annex EN 12390-2, 2000. Testing hardened concrete. Part 2: Making and curing specimens for strength tests. EN 12390-3, 2001. Testing hardened concrete. Part 3: Compressive strength of test specimens. EN 12390-5, 2000. Testing hardened concrete. Part 5: Flexural strength of test specimens. EN 12390-5:2000/AC: 2004. Testing hardened concrete. Part 5: Flexural strength of test specimens. EN 12390-6, 2000. Testing hardened concrete. Part 6: Tensile splitting strength of test specimens. EN 12390-6:2000/AC: 2004. Testing hardened concrete. Part 6: Tensile splitting strength of test specimens. EN 14158, 2004. Natural stone test methods -Determination of rupture energy. EN 196-1, 2005. Methods of testing cement. Part 1: Deter- mination of strength. EN 932-2, 1999. Tests for general properties of aggregates. Part 2: Methods for reducing laboratory samples. EN 932-5, 1999. Tests for general properties of aggregates. Part 5: Common equipment and calibration. EN 933-2, 1995. Test for geometrical properties of aggre- gates. Part 2: Determination of particle size distribution. Test sieves. Nominal sizes of apertures.
- Norms published by the Spanish Organization for Standardization (Asociación Española de Normalización), Madrid, Spain UNE 83115, 1989. Aggregates for concrete. Determination of the coefficient of friability of the sands. [In Spanish].